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Chapter 1. Linux System Calls,
Permissions, and Capabilities

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 2nd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you’d like to be actively involved in reviewing and commenting on
this draft, please reach out to the editor at rfernando@oreilly.com.

In most cases, containers run within a computer running a Linux operating
system, and it’s going to be helpful to understand some of the fundamental
features of Linux so that you can see how they affect security, and in
particular how they apply to containers. I’ll cover system calls, file-based
permissions, and capabilities and conclude with a discussion of privilege
escalation. If you’re familiar with these concepts, feel free to skip to the
next chapter.

This is all important because containers run Linux processes that are visible
from the host. A containerized process uses system calls and needs
permissions and privileges in just the same way that a regular process does.
But containers give us some new ways to control how these permissions are
assigned at runtime or during the container image build process, which will
have a significant impact on security.



System Calls
Applications run in what’s called user space, which has a lower level of
privilege than the operating system kernel. If an application wants to do
something like access a file, communicate using a network, or even find the
time of day, it has to ask the kernel to do it on the application’s behalf. The
programmatic interface that the user space code uses to make these requests
of the kernel is known as the system call or syscall interface.

There are some 400+ different system calls, with the number varying
according to the version of Linux kernel. Here are a few examples:

read

read data from a file

write

write data to a file

open

open a file for subsequent reading or writing

execve

run an executable program

chown

change the owner of a file

clone

create a new process

Application developers rarely if ever need to worry about system calls
directly, as they are usually wrapped in higher-level programming
abstractions. The lowest-level abstraction you’re likely to come across as an
app developer is the glibc or musl libraries, or the Golang syscall



package. In practice these are usually wrapped by higher layers of
abstractions as well.

NOTE
If you would like to learn more about system calls, check out my talk “A Beginner’s
Guide to Syscalls”, available on O’Reilly’s learning platform.

Application code uses system calls in exactly the same way whether it’s
running in a container or not, but as you will see later in this book, there are
security implications to the fact that all the containers on a single host share
—that is, they are making system calls to—the same kernel.

Not all applications need all system calls, so—following the principle of
least privilege—there are Linux security features that allow users to limit
the set of system calls that different programs can access. You’ll see how
these can be applied to containers in Chapter 5.

I’ll return to the subject of user space and kernel-level privileges in
Chapter 4. For now let’s turn to the question of how Linux controls
permissions on files.

File Permissions
On any Linux system, whether you are running containers or not, file
permissions are the cornerstone of security. There is a saying that in Linux,
everything is a file. Application code, data, configuration information, logs,
and so on—it’s all held in files. Even physical devices like screens and
printers are represented as files. Permissions on files determine which users
are allowed to access those files and what actions they can perform on the
files. These permissions are sometimes referred to as discretionary access
control, or DAC.

Let’s examine this a little more closely.

https://oreil.ly/HrZzJ
https://oreil.ly/QTxzb


If you have spent much time in a Linux terminal, you will likely have run
the ls -l command to retrieve information about files and their attributes.

Figure 1-1. Linux file permissions example

In the example in Figure 1-1, you can see a file called myapp that is owned
by a user called “liz” and is associated with the group “staff.” The
permission attributes tell you what actions users can perform on this file,
depending on their identity. There are nine characters in this output that
represent the permissions attributes, and you should think of these in groups
of three:

The first group of three characters describes permissions for the
user who owns the file (“liz” in this example).

The second group gives permissions for members of the file’s
group (here, “staff”).

The final set shows what any other user (who isn’t “liz” or a
member of “staff”) is permitted to do.

There are three actions that users might be able to perform on this file: read,
write, or execute, depending on whether the r, w, and x bits are set. The
three characters in each group represent bits that are either on or off,
showing which of these three actions are permitted—a dash means that the
bit isn’t set.

In this example, only the owner of the file can write to it, because the w bit
is set only in the first group, representing the owner permissions. The owner



can execute the file, as can any member of the group “staff.” Any user is
allowed to read the file, because the r bit is set in all three groups.

NOTE
If you’d like more detail on Linux permissions, there is a good article at
https://www.linuxjournal.com/content/mastering-linux-file-permissions-and-ownership.

There’s a good chance that you were already familiar with these r, w, and x
bits, but that’s not the end of the story. Permissions can be affected by the
use of setuid, setgid, and sticky bits. The first two are important from a
security perspective because they can allow a process to obtain additional
permissions, which an attacker might use for malevolent purposes.

setuid and setgid
Normally, when you execute a file, the process that gets started inherits
your user ID. If the file has the setuid bit set, the process will have the user
ID of the file’s owner. The following example uses a copy of the sleep
executable owned by a non-root user:

liz@vm:~$ ls -l `which sleep` 
-rwxr-xr-x 1 root root 35336 Apr  5  2024 /usr/bin/sleep 
liz@vm:~$ cp /usr/bin/sleep ./mysleep 
liz@vm:~$ ls -l mysleep 
-rwxr-xr-x 1 liz liz 35336 May  7 10:50 mysleep

The ls output shows that the copy is owned by the user called liz. Run
this by executing ./mysleep 100, and in a second terminal you can take
a look at the running process—the 100 means you’ll have 100 seconds to
do this before the process terminates (I have removed some lines from this
output for clarity):

liz@vm:~$ ps ajf 
PPID   PID  PGID   SID TTY    TPGID STAT  UID  TIME COMMAND 
1351  1352  1352  1352 pts/1   1376 Ss   1001  0:00 -bash 



1352  1376  1376  1352 pts/1   1376 S+   1001  0:00  \_ ./mysleep 
10

This is running under user ID 1001, which corresponds to the user liz on
my VM. Now let’s run the same program under root by executing sudo
./mysleep 100. In a second terminal the process looks slightly
different.

PPID   PID  PGID   SID TTY    TPGID STAT  UID  TIME COMMAND 
1351  1352  1352  1352 pts/1   2127 Ss   1001  0:00 -bash 
1352  2127  2127  1352 pts/1   2127 S+      0  0:00  \_ sudo 
./mysleep 10 
2127  2128  2128  2128 pts/2   2129 Ss      0  0:00      \_ sudo 
./mysleep 10 
2128  2129  2129  2128 pts/2   2129 S+      0  0:00          \_ 
./mysleep 10

The UID of 0 shows that both the sudo process and the mysleep process
are running under the root UID.

NOTE
If your version of sudo is 1.9.14 or above, as mine is, you’ll see two sudo processes,
but for older versions there will be only one. The man page for sudo tells us that in
newer versions, it forks one process in a new pseudo-terminal (pts/2 in my output
above) to act as a monitor process, before forking a second time to run the command.

Now let’s try turning on the setuid bit:

liz@vm:~$ chmod +s mysleep 
liz@vvm:~$ ls -l mysleep 
-rwsr-sr-x 1 liz liz 35336 May  7 10:50 mysleep

Run sudo ./mysleep 100 again, and look at the running processes
again from the second terminal:

  PPID   PID  PGID   SID TTY   TPGID STAT  UID  TIME COMMAND 
 1351  1352  1352  1352 pts/1 29543 Ss   1001  0:00 -bash 



 1352 29543 29543  1352 pts/1 29543 S+      0  0:00  \_ sudo 
./mysleep 10 
29543 29544 29544 29544 pts/2 29545 Ss      0  0:00      \_ sudo 
./mysleep 10 
29544 29545 29545 29544 pts/2 29545 S+   1001  0:00          \_ 
./mysleep 10

The sudo processes are still running as root, but this time mysleep has
taken its user ID from the owner of the file.

This setuid bit can be used to give a program privileges that it needs but that
are not usually extended to regular users.

NOTE
Perhaps the canonical example of the setuid bit used to be the executable ping, which
needed permission to open raw network sockets in order to send its ping message.

An administrator might be happy for their users to run ping, but that doesn’t mean they
are comfortable letting users open raw network sockets for any other purpose they might
think of. Instead, the ping executable was installed with the setuid bit set and owned
by the root user so that ping can use privileges normally associated with root.

This is no longer needed since the addition of ICMP sockets in kernel version 5.6,
which are designed to allow non-privileged processes to open a socket purely for ICMP
protocol messages, as used by ping.

At the time of writing, most distributions don’t yet use this ICMP sockets mechanism
for ping. Instead, they give the ping executable permission to access raw sockets using a
capability called CAP_NET_RAW. We’ll look into this in more detail shortly, in “Linux
Capabilities”.

We’ve already seen setuid in action, because it’s used by sudo, which is an
executable owned by root.

liz@vm:~$ ls -l `which sudo` 
-rwsr-xr-x 1 root root 277936 Apr  8  2024 /usr/bin/sudo

The setuid bit on sudo means that the executable runs as the root user,
which matches what we saw in the output from ps earlier.



NOTE
Once it’s running, sudo goes on to check that the real user that invoked it actually has
permissions to run sudo, by checking the sudoers file or some other configured
security policy mechanism. If you want to explore this in more detail, man sudo has a
good explanation.

As you saw when copying sleep, when you copy a file, its ownership
attributes are set according to the user ID you’re operating as, and the setuid
bit is not carried over. If you want the setuid bit you can run chmod +s on
the file.

Let’s explore setuid further by taking a copy of bash.

liz@vm:~$ cp `which bash` ./mybash  
liz@vm:~$ ls -l mybash  
-rwxr-xr-x  1 liz  liz  1446024 May  7 15:33 mybash

This file is owned by my regular user and doesn’t have the setuid bit set.
Now let’s change both those things.

liz@vm:~$ sudo chown root ./mybash 
liz@vm:~$ sudo chmod +s ./mybash 
liz@vm:~$ ls -l mybash  
-rwsr-sr-x  1 root liz  1446024 May  7 15:33 mybash

Since this executable is owned by root and has setuid, it seems reasonable
to imagine that when you run it, the process will be running as root. And
yet, look what happens when you try it.

liz@vm:~$ ./mybash 
mybash-5.2$ whoami 
liz

As you can see, the process is not running as root, even though the setuid
bit is on and the file is owned by root. What’s happening here? The answer
is that in modern versions of bash (and several other interpreters like



python, node and ruby) the executable might start off running as root,
but it explicitly resets its user ID to be that of the original user to avoid
potential privilege escalations.

To explore this for yourself in more detail, you can use strace to see the
system calls that the bash (or mybash) executable makes. Find the
process ID of your shell, and then in a second terminal run the following
command:

liz@vm:~$ sudo strace -f -p <shell process ID> 

This will trace out all the system calls from within that shell, including any
executables running within it. Look for the setresuid() or setuid()
system calls being used to reset the user ID..

Not all executables are written to reset the user ID in this way. You can use
the copy of sleep from earlier in this chapter to see more normal setuid
behavior. Change the ownership to root, set the setuid bit (this gets reset
when you change ownership), and then run it as a non-root user:

liz@vm:~$ sudo chown root mysleep 
liz@vm:~$ sudo chmod +s mysleep 
liz@vm:~$ ls -l ./mysleep 
-rwsr-sr-x 1 root liz 35336 May  7 10:50 mysleep 
liz@vm:~$ ./mysleep 100

In another terminal you can use ps to see that this process is running under
root’s user ID:

liz@vm:~$ ps ajf      6646  0.0  0.0   7468   764 pts/2    S+   
00:38   0:00 ./mysleep 100 
  PPID   PID  PGID   SID TTY   TPGID STAT  UID  TIME COMMAND 
35834 35835 35835 35835 pts/0 42509 Ss    1001   0:00 -bash 
35835 42509 42509 35835 pts/0 42509 S+       0   0:00  \_ 
./mysleep 100

Now that you have experimented with the setuid bit, you are in a good
position to consider its security implications.



Security implications of setuid

The setuid bit allows someone to act as if they were a different user, which
could give them access to different files, executables, and privileges that
they are not supposed to have. As you’ve seen, modern versions of bash
and most shells and interpreters reset their user ID to avoid being used for
trivial privilege escalations. Because setuid provides a dangerous pathway
to privilege escalation, some container image scanners (covered in Chapter
7) will report on the presence of files with the setuid bit set.

You can also prevent setuid from being used within a container using the -
-security-opt no-new-privileges option on a docker run
command - I’ll come back to this in Chapter 3. However, that won’t stop an
attacker from writing a setuid executable owned by root onto mounted
directory on the host. You’ll find an example of this in the
chapter2/setuid directory of the GitHub repo that accompanies this
book. Host volume mounts can lead to all sorts of attacks, and we’ll discuss
this more in Chapter X.

The setuid bit dates from a time when privileges were much simpler—either
your process had root privileges or it didn’t. The setuid bit provided a
mechanism for granting extra privileges to non-root users. Version 2.2 of
the Linux kernel introduced more granular control over these extra
privileges through capabilities.

Linux Capabilities
There are over 30 different capabilities in today’s Linux kernel. Capabilities
can be assigned to a thread to determine whether that thread can perform
certain actions. For example, a thread needs the
CAP_NET_BIND_SERVICE capability in order to bind to a low-numbered
(below 1024) port. CAP_SYS_BOOT exists so that arbitrary executables
don’t have permission to reboot the system. CAP_SYS_MODULE is needed
to load or unload kernel modules, and CAP_BPF is needed to load eBPF
programs.

https://oreil.ly/viKwm
http://github.com/lizrice/container-security


NOTE
Consult man capabilities on a Linux machine for detailed information on each
individual capabilities.

I mentioned earlier that the ping tool uses the CAP_NET_RAW capability so
that it can open a raw network socket. T

Capabilities can be assigned to both files and processes. You can see the
capabilities for a file using getcap, like this:

liz@vm:~$ getcap which ping 
/usr/bin/ping cap_net_raw=ep

You can see the capabilities assigned to a process by using the getpcaps
command. Many processes typically won’t have capabilities:

liz@vm:~$ ps 
  PID TTY          TIME CMD 
22355 pts/0    00:00:00 bash 
25058 pts/0    00:00:00 ps 
liz@vm:~$ getpcaps 22355 
22355: =

In the past, getpcaps assumed that if a process was running as root, it
had all capabilities, so would report the whole list. These days, getpcaps
and other tools have been updated not to make this assumption, so
processes running as root will typically appear with no capabilities.

We’ve seen that the executable file for ping has CAP_NET_RAW associated
with it, so let’s see the capabilities assigned to the process when we run it.
Leave ping running in one terminal:

liz@vm:~$ ping 127.0.0.1 
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data. 
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.162 ms 
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.188 ms 
…



In a second terminal, get the process ID and check its capabilities.

liz@vm:~$ getpcaps 50394 
50394: =

How is ping successfully opening a socket if it doesn’t have the
CAP_NET_RAW capability required? And why doesn’t it have it, if the
executable file has it?

The answer can be found by using a second terminal to trace the system
calls, exactly the same as described earlier when examining how bash
behaves. You’ll see that ping is now capabilities-aware, and deliberately
discards CAP_NET_RAW once the socket is open and it has no further use
for the capability. (A few irrelevant calls and details have been omitted for
clarity.)

capget({version=_LINUX_CAPABILITY_VERSION_3, pid=0}, 
{effective=0, permitted=1<<CAP_NET_RAW, inheritable=0}) = 0        
 

capset({version=_LINUX_CAPABILITY_VERSION_3, pid=0}, 
{effective=1<<CAP_NET_RAW, permitted=1<<CAP_NET_RAW, 
inheritable=0}) = 0      
socket(AF_INET, SOCK_RAW, IPPROTO_ICMP) = 3             
socket(AF_INET6, SOCK_RAW, IPPROTO_ICMPV6) = 4 
capget({version=_LINUX_CAPABILITY_VERSION_3, pid=0}, 
{effective=1<<CAP_NET_RAW, permitted=1<<CAP_NET_RAW, 
inheritable=0}) = 0 
capset({version=_LINUX_CAPABILITY_VERSION_3, pid=0}, 
{effective=0, permitted=1<<CAP_NET_RAW, inheritable=0})            

The process checks that CAP_NET_RAW is in the set of permissions
that it is permitted to use. The return code 0 tells it that it is.
The process uses capset to make that capability effective.
It opens sockets for IPv4 and IPv6.
Now that the sockets are open, it uses capset to remove the capability
from its effective set.



By the time getpcaps inspected the process’s capabilities, it was no
longer in effect for the process.

NOTE
For a more in-depth discussion of the ways that file and process permissions interact,
see Adrian Mouat’s post on Linux capabilities in practice.

Following the principle of least privilege, it’s a good idea to grant only the
capabilities that are needed for a process to do its job. When you run a
container, you get the option to control the capabilities that are permitted, as
you’ll see in Chapter 5.

Now that you are familiar with the basic concepts of permissions and
privileges in Linux, I’d like to turn to the idea of escalating privileges.

Privilege Escalation
The term “privilege escalation” means extending beyond the privileges you
were supposed to have so that you can take actions that you shouldn’t be
permitted to take. To escalate their privileges, an attacker takes advantage
of a system vulnerability or poor configuration to grant themselves extra
permissions.

Oftentimes, the attacker starts as a non-privileged user and wants to gain
root privileges on the machine. A common method of escalating privileges
is to look for software that’s already running as root and then take
advantage of known vulnerabilities in the software. For example, web
server software might include a vulnerability that allows an attacker to
remotely execute code, such as the Struts vulnerabilities1. If the web server
is running as root, anything that is remotely executed by an attacker will run
with root privileges. For this reason, it is a good idea to run software as a
non-privileged user whenever possible.

https://adrianmouat.com/posts/linux-capabilities-why-they-exist-and-how-they-work/


As you’ll learn later in this book, by default containers run as root. This
means that compared with a traditional Linux machine, applications
running in containers are far more likely to be running as root. An attacker
who can take control of a process inside a container still has to somehow
escape the container, but once they achieve that, they will be root on the
host, and there is no need for any further privilege escalation. Chapter 9
discusses this in more detail.

Even if a container is running as a non-root user, there is potential for
privilege escalation based on the Linux permissions mechanisms you have
seen earlier in this chapter:

Container images including executable files with the setuid bit

Additional capabilities granted to a container running as a non-root
user

You’ll learn about approaches for mitigating these issues later in the book.

Summary
In this chapter you have learned (or revised) some fundamental Linux
mechanisms that will be essential to understanding later chapters of this
book. They also come into play in security in numerous ways; the container
security controls that you will encounter are all built on top of these
fundamentals.

Now that you have some basic Linux security controls under your belt, it’s
time to start looking at the mechanisms that make up containers so that you
can understand for yourself how root on the host and in the container are
one and the same thing.

1  In the first edition of this book, I was referring to a 2018 critical remote code execution
vulnerability that had received a lot of press coverage. It turns out there have been other
serious Struts vulnerabilities since then, which is a good case study in how vulnerabilities

https://cert.europa.eu/static/SecurityAdvisories/2018/CERT-EU-SA2018-022.pdf
https://www.bleepingcomputer.com/news/security/critical-apache-struts-rce-vulnerability-wasnt-fully-fixed-patch-now/
https://www.bleepingcomputer.com/news/security/new-critical-apache-struts-flaw-exploited-to-find-vulnerable-servers/


continue to be found in widely-used software packages, and why it’s important to keep
updating your dependencies!



Chapter 2. Control Groups

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 3rd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you’d like to be actively involved in reviewing and commenting on
this draft, please reach out to the editor at rfernando@oreilly.com.

In this chapter, you will learn about one of the fundamental building blocks
that are used to make containers: control groups, more commonly known as
cgroups.

Cgroups limit the resources, such as memory, CPU, and network
input/output, that a group of processes can use. In containers, they are used
to distribute resources across different workloads in a controlled fashion.
From a security perspective, well-tuned cgroups can ensure that one process
can’t affect the behavior of other processes by hogging all the resources—
for example, using all the CPU or memory to starve other applications. You
can also limit the total number of processes allowed within a control group -
a handy technique to protect against fork bombs, which I’ll cover at the end
of the chapter.

As you will see in detail in Chapter 3, containers run as regular Linux
processes, so cgroups can be used to limit the resources available to each
container. Let’s see how cgroups are organized.



NOTE
Most Linux distributions today use cgroups version 2, which has some improvements
over the original implementation that was widely deployed when containers first
became popular. Cgroups v2 is now what’s used by Kubernetes and all the popular
container runtimes, and it’s what is discussed here. However, you might find some
references to v1 in older literature.

The main difference is that version 2 uses a single, unified hierarchy for managing all
the supported resource types, rather than having separate hierarchies for the different
types of resource being managed.

Control Group Controllers
Control groups are represented in the Linux filesystem under a mount point
residing at /sys/fs/cgroup. Managing cgroups involves reading and
writing to the files and directories under this mount point. Let’s take a look
at the contents of that directory.

root@vm:/sys/fs/cgroup# ls 
cgroup.controllers      io.pressure 
cgroup.max.depth        io.prio.class 
cgroup.max.descendants  io.stat 
cgroup.pressure         memory.numa_stat 
cgroup.procs            memory.pressure 
cgroup.stat             memory.reclaim 
cgroup.subtree_control  memory.stat 
cgroup.threads          memory.zswap.writeback 
cpu.pressure            misc.capacity 
cpu.stat                misc.current 
cpu.stat.local          misc.peak 
cpuset.cpus.effective   proc-sys-fs-binfmt_misc.mount 
cpuset.cpus.isolated    sys-fs-fuse-connections.mount 
cpuset.mems.effective   sys-kernel-config.mount 
dev-hugepages.mount     sys-kernel-debug.mount 
dev-mqueue.mount        sys-kernel-tracing.mount 
init.scope              system.slice 
io.cost.model           user.slice 
io.cost.qos

As I’ll show you shortly, a new control group can be created by making a
new directory, which in turn can have child control groups created within it,



building up a hierarchy of control groups.

The cgroup.controllers file shows what cgroup controllers are
available on this machine.

root@vm:/sys/fs/cgroup# cat cgroup.controllers  
cpuset cpu io memory hugetlb pids rdma misc

Each controller manages a type of resource that processes might want to
consume. For example, the cpu controller manages the CPU usage of the
processes in a cgroup, and the memory controller manages the memory
they can access.

To take effect, controllers have to be enabled by writing the controller name
into the cgroup.subtree_control file, and a controller can only be
enabled for a cgroup if it is enabled in its parent. Every running Linux
process is a member of exactly one control group, and you’ll find the
process IDs of all the group’s members listed in the cgroup.procs file.

Creating and configuring cgroups
Creating a subdirectory inside the /sys/fs/cgroup directory creates a
cgroup, and the kernel automatically populates the directory with the
various files that represent parameters and statistics about that group and its
resources:

root@vm:/sys/fs/cgroup# mkdir liz 
root@vm:/sys/fs/cgroup# ls liz 
cgroup.controllers                
cgroup.events 
cgroup.freeze 
... 
pids.max 
pids.peak 
rdma.current 
rdma.max



The details of what each of these different files means are beyond the scope
of this book, but some of the files hold parameters that you can manipulate
to define limits for the control group, and others communicate statistics
about the current use of resources in the control group. You could probably
make an educated guess that, for example, memory.current is the file that
describes how much memory is currently being used by the control group.
The maximum that the cgroup is allowed to use is defined by memory.max:

root@vm:/sys/fs/cgroup/liz# cat memory.max max

By default the memory isn’t limited, and if a process is allowed to consume
unlimited memory, it can starve other processes on the same host. This
might happen inadvertently through a memory leak in an application, or it
could be the result of a resource exhaustion attack that takes advantage of a
memory leak to deliberately use as much memory as possible. By setting
limits on the memory and other resources that one process can access, you
can reduce the effects of this kind of attack and ensure that other processes
can carry on as normal.

To set a limit for a cgroup, you simply have to write the value into the file
that corresponds to the parameter you want to limit. Let’s set the maximum
available memory for the cgroup I just created:

root@vm:/sys/fs/cgroup/memory/liz# echo 100000 > memory.max

Now you’ll find that the memory.max parameter is approximately what
you configured as the limit—presumably, rounded down to the nearest page
size:

root@vm:/sys/fs/cgroup/memory/liz$ cat memory.max 
98304

This illustrates how the limits are set for a group, but the final piece of the
cgroups puzzle is to see how processes get assigned into cgroups.

https://oreil.ly/npkSE


Assigning a Process to a Cgroup
As mentioned earlier, the set of processes in a cgroup are listed in its
cgroup.procs file. A new cgroup will start off with no processes, so
that file will be empty.

When you start a process, it joins the cgroup of its parent, but you can move
it into a new cgroup by simply writing its process ID into the cgroup.procs
file of the group you want it to join. In the following example, 29903 is the
process ID of a shell:

root@vm:/sys/fs/cgroup/memory/liz$ echo 29903 > cgroup.procs 
root@vmt:/sys/fs/cgroup/memory/liz$ cat cgroup.procs 
29903 
root@vm:/sys/fs/cgroup/memory/liz$ cat /proc/29903/cgroup 
0::/liz

The shell is now a member of the liz cgroup, with its memory limited to a
little under 100kB. This isn’t a lot to play with, so even trying to run ls
from inside the shell breaches the cgroup limit:

$ ls 
Killed

The process gets killed when it attempts to exceed the memory limit.

Docker Using Cgroups
You’ve seen how cgroups are manipulated by modifying the files in the
cgroup filesystem for a particular type of resource. It’s straightforward to
see this in action in Docker.



NOTE
To follow along with these examples, you will need Docker running directly on a Linux
(virtual) machine. If you’re running Docker for Mac/Windows, it’s running within a
virtual machine, which means (as you’ll see in Chapter 4) that these examples won’t
work for you, because the Docker daemon and containers are running using a separate
kernel within that virtual machine.

Since most Linux distributions use systemd, and because the systemd driver is the
recommended default driver for cgroups in Kubernetes, my examples assume the
systemd driver. Some readers might encounter the alternative cgroupfs driver, but for the
purposes of this book the only relevant difference is that the cgroups are created in a
different place in the cgroup file system hierarchy.

Docker automatically creates a cgroup for each container, with a hierarchy
that looks like this:

/sys/fs/cgroup/system.slice/ 
└── docker-<container_id>.scope/ 
    ├── cpu.max 
    ├── memory.max 
    ├── pids.max 
    ├── cgroup.procs 
    └── ...

The system.slice part of the hierarchy indicates that the cgroups are
being managed using the systemd driver.

This example runs a container in the background with a limit of 100MB of
memory. As you’ll see, Docker uses the cgroup mechanism to enforce this
limit. The container will sleep for long enough for you to see its cgroup:

root@vm:~$ docker run --rm --memory 100M -d alpine sleep 10000 
68fb008c5fd3f9067e1aa245b4522a9f3675720d8953371ecfcf2e9faf91b8a0 
root@vm:/sys/fs/cgroup$ ls system.slice/docker-
68fb008c5fd3f9067e1aa245b4522a9f3675720d8953371ecfcf2e9faf91b8a0.
scope 
cgroup.controllers 
cgroup.events 
cgroup.freeze 
...



Check the memory limit for and current usage by this container :

root@vm:/sys/fs/cgroup$ cat system.slice/docker-
68fb...scope/memory.max 
104857600 
root@vm:/sys/fs/cgroup$ cat system.slice/docker-
68fb...scope/memory.current 
462848

You can also confirm that the sleeping process is a member of the cgroup:

root@vm:/sys/fs/cgroup$ cat system.slice/docker-
68fb...scope/cgroup.procs  19824 
root@vagrant:/sys/fs/cgroup$ ps -eaf | grep sleep 
root     19824 19789  0 18:22 ?        00:00:00 sleep 10000 
root     20486 18862  0 18:28 pts/1    00:00:00 grep --color=auto 
sleep

Preventing a fork bomb
A fork bomb rapidly creates processes that in turn create more processes,
leading to an exponential growth in the use of resources that ultimately
cripples the machine. I’ll show you how to reproduce this, but for caution’s
sake, please don’t attempt running the fork bomb on a system that you can’t
risk bringing to its knees!

NOTE
If you don’t want to risk this yourself, this video of a talk I gave a few years back
includes a demonstration.

Earlier in this chapter I created a cgroup called liz and set a memory limit.
Let’s remove the memory limit and instead define the maximum number of
processes allowed in the cgroup.

root@vm:/sys/fs/cgroup/liz# echo max > memory.max 
root@vm:/sys/fs/cgroup/liz# echo 20 > pids.max

https://oreil.ly/Us75y


Add the current shell to the cgroup:

root@vm:/sys/fs/cgroup/liz# echo $$ > cgroup.procs

Inspect the number of processes.

root@vm:/sys/fs/cgroup/liz# cat pids.current 
2

Why are there two processes in this cgroup? The first is the shell, added
explicitly by writing its process ID to the cgroup.procs file. Since a
newly-created process inherits the cgroup of its parent, the second process
observed is the cat program running within the shell.

Now you can run a fork bomb - this syntax will work if your shell is bash:

root@vm:/sys/fs/cgroup/liz# :(){ :|:& };:

You should very soon see your terminal filling up with bash: fork:
retry: Resource temporarily unavailable messages, as
processes fail to be started due to the limit imposed by the cgroup. While
this might be annoying in your terminal window, other processes on the
machine will still be able to operate fine. If the fork bomb were allowed to
keep creating new processes, you would see other operations grinding to a
halt.

You can use the kill feature of cgroups to terminate the fork bomb.
Unfortunately, the shell you started the fork bomb in will also be a casualty
of this operation, which kills all the processes in this group:

root@vm:/sys/fs/cgroup/liz# echo 1 > cgroup.kill

Curious about how the fork bomb works? While this has nothing really to
do with container security, it’s a fun bit of syntax:

:() {...} defines a function called : (yes, a colon is a valid 
name for a function in Bash).



The content of the function is :|:&. The function calls itself, and pipes the
output into another invocation of itself. In bash, piping the output of a
function causes it to be run in a new process, as does running a process in
the background, which is what the & is for. As a result, each invocation of
the : function spawns two processes.

The ; terminates the function definition, and the final : calls the function
that has just been defined, kicking off an exponential cascade of process
creation - until the cgroup limit is hit.

Summary
Cgroups limit the resources available to different Linux processes. You
don’t have to be using containers to take advantage of cgroups, but Docker
and other container runtimes provide a convenient interface for using them:
it’s very easy to set resource limits at the point where you run a container,
and those limits are policed by cgroups.

Constraining resources provides protection against a class of attacks that
attempt to disrupt your deployment by consuming excessive resources,
thereby starving legitimate applications. It’s recommended that you set
memory and CPU limits when you run your container applications.

Now that you know how resources are constrained in containers, you are
ready to learn about the other pieces of the puzzle that make up containers:
namespaces and changing the root directory. Move on to Chapter 3 to find
out how these work.



Chapter 3. Container Isolation

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 4th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you’d like to be actively involved in reviewing and commenting on
this draft, please reach out to the editor at rfernando@oreilly.com.

This is the chapter in which you’ll find out how containers really work! This
will be essential to understanding the extent to which containers are isolated
from each other and from the host. You will be able to assess for yourself the
strength of the security boundary that surrounds a container.

As you’ll know if you have ever run docker exec <image> bash, a
container looks a lot like a virtual machine from the inside. If you have shell
access to a container and run ps, you can see only the processes that are
running inside it. The container has its own network stack, and it seems to
have its own filesystem with a root directory that bears no relation to root on
the host. You can run containers with limited resources, such as a restricted
amount of memory or a fraction of the available CPUs. This all happens
using the Linux features that we’re going to delve into in this chapter.

However much they might superficially resemble each other, it’s important
to realize that containers aren’t virtual machines, and in Chapter 4 we’ll take
a look at the differences between these two types of isolation. In my
experience, really understanding and being able to contrast the two is
absolutely key to grasping the extent to which traditional security measures



can be effective in containers, and to identifying where container-specific
tooling is necessary.

You’ll see how containers are built out of Linux constructs such as
namespaces and chroot, along with cgroups, which were covered in
Chapter 2. With an understanding of these constructs under your belt, you’ll
have a feeling for how well protected your applications are when they run
inside containers.

Although the general concepts of these constructs are fairly straightforward,
the way they work together with other features of the Linux kernel can be
complex. Container escape vulnerabilities (for example, CVE-2019-5736, a
serious vulnerability discovered in both runc and LXC) have been based on
subtleties in the way that namespaces, capabilities, and filesystems interact.

Linux Namespaces
If cgroups control the resources that a process can use, namespaces control
what it can see. By putting a process in a namespace, you can restrict the
resources that are visible to that process.

The origins of namespaces date back to the Plan 9 operating system. At the
time, most operating systems had a single “name space” of files. Unix
systems allowed the mounting of filesystems, but they would all be mounted
into the same system-wide view of all filenames. In Plan 9, each process was
part of a process group that had its own “name space” abstraction, the
hierarchy of files (and file-like objects) that this group of processes could
see. Each process group could mount its own set of filesystems without
seeing each other.

The first namespace was introduced to the Linux kernel in version 2.4.19
back in 2002. This was the mount namespace, and it followed similar
functionality to that in Plan 9. Nowadays there are several different kinds of
namespace supported by Linux:

Unix Timesharing System (UTS)—this sounds complicated, but to
all intents and purposes this namespace is really just about the
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hostname and domain names for the system that a process is aware
of.

Process IDs

Mount points

Network

User and group IDs

Inter-process communications (IPC)

Control groups (cgroups)

Time

A process is always in exactly one namespace of each type. When you start
a Linux system it has a single namespace of each type, but as you’ll see, you
can create additional namespaces and assign processes into them. You can
easily see the namespaces on your machine using the lsns command:

liz@vm:~$ lsns 
        NS TYPE   NPROCS    PID USER COMMAND 
4026531834 time        3 848409 liz  -bash 
4026531835 cgroup      3 848409 liz  -bash 
4026531836 pid         3 848409 liz  -bash 
4026531837 user        3 848409 liz  -bash 
4026531838 uts         3 848409 liz  -bash 
4026531839 ipc         3 848409 liz  -bash 
4026531840 net         3 848409 liz  -bash 
4026531841 mnt         3 848409 liz  -bash

This looks nice and neat, and there is one namespace for each of the types I
mentioned previously. Sadly, this is an incomplete picture! The man page for
lsns tells us that it “reads information directly from the /proc filesystem
and for non-root users it may return incomplete information.”

The additional namespaces you might see as root are not terribly interesting
until you start creating some of your own, but I mentioned it to point out that
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when we are using lsns, we should run as root (or use sudo) to get the
complete picture.

Let’s explore how you can use namespaces to create something that behaves
like what we call a “container.”

NOTE
The examples in this chapter use Linux shell commands to create a container. If you
would like to try creating a container using the Go programming language, you will find
instructions at https://github.com/lizrice/containers-from-scratch.

Isolating the Hostname
Let’s start with the namespace for the Unix Timesharing System (UTS). As
mentioned previously, this covers the hostname and domain names. By
putting a process in its own UTS namespace, you can change the hostname
for this process independently of the hostname of the machine or virtual
machine on which it’s running.

If you open a terminal on Linux, you can see the hostname:

liz@myhost:~$ hostname 
myhost

Most (perhaps all?) container systems give each container a random ID. By
default this ID is used as the hostname. You can see this by running a
container and getting shell access. For example, in Docker you could do the
following:

liz@myhost:~$ docker run --rm -it --name hello ubuntu bash 
root@cdf75e7a6c50:/$ hostname 
cdf75e7a6c50

Incidentally, you can see in this example that even if you give the container
a name in Docker (here I specified --name hello), that name isn’t used
for the hostname of the container.

https://github.com/lizrice/containers-from-scratch


The container can have its own hostname because Docker created it with its
own UTS namespace. You can explore the same thing by using the unshare
command to create a process that has a UTS namespace of its own.

As it’s described on the man page (seen by running man unshare),
unshare lets you “run a program with some namespaces unshared from
the parent.” Let’s dig a little deeper into that description. When you “run a
program,” the kernel creates a new process and executes the program in it.
This is done from the context of a running process—the parent—and the
new process will be referred to as the child. The word “unshare” means that,
rather than sharing namespaces of its parent, the child is going to be given
its own.

Let’s give it a try. You need to have root privileges to do this, hence the
sudo at the start of the line:

liz@myhost:~$ sudo unshare --uts sh 
$ hostname 
myhost 
$ hostname experiment 
$ hostname 
experiment 
$ exit 
liz@myhost:~$ hostname 
myhost

This runs a sh shell in a new process that has a new UTS namespace. Any
programs you run inside the shell will inherit its namespaces. When you run
the hostname command, it executes in the new UTS namespace that has
been isolated from that of the host machine.

If you were to open another terminal window to the same host before the
exit, you could confirm that the hostname hasn’t changed for the whole
(virtual) machine. You can change the hostname on the host without
affecting the hostname that the namespaced process is aware of, and vice
versa.

This is a key component of the way containers work. Namespaces give them
a set of resources (in this case the hostname) that are independent of the host



machine, and of other containers. But we are still talking about a process
that is being run by the same Linux kernel. This has security implications
that I’ll discuss later in the chapter. For now, let’s look at another example of
a namespace by seeing how you can give a container its own view of
running processes.

Isolating Process IDs
If you run the ps command inside a Docker container, you can see only the
processes running inside that container and none of the processes running on
the host:

liz@myhost:~$ docker run --rm -it --name hello ubuntu bash 
root@cdf75e7a6c50:/$ ps -eaf 
UID        PID  PPID  C STIME TTY          TIME CMD 
root         1     0  0 18:41 pts/0    00:00:00 bash 
root        10     1  0 18:42 pts/0    00:00:00 ps -eaf 
root@cdf75e7a6c50:/$ exit 
liz@myhost:~$

This is achieved with the process ID namespace, which restricts the set of
process IDs that are visible. Try running unshare again, but this time
specifying that you want a new PID namespace with the --pid flag:

liz@myhost:~$ sudo unshare --pid sh 
$ whoami 
root 
$ whoami 
sh: 2: Cannot fork 
$ whoami 
sh: 3: Cannot fork 
$ ls 
sh: 4: Cannot fork 
$ exit 
liz@myhost:~$

This doesn’t seem very successful—it’s not possible to run any commands
after the first whoami! But there are some interesting artifacts in this
output.



The first process under sh seems to have worked OK, but every command
after that fails due to an inability to fork. The error is output in the form
<command>: <process ID>: <message>, and you can see that the
process IDs are incrementing each time. Given the sequence, it would be
reasonable to assume that the first whoami ran as process ID 1. That is a clue
that the PID namespace is working in some fashion, in that the process ID
numbering has restarted. But it’s pretty much useless if you can’t run more
than one process!

There are clues to what the problem is in the description of the --fork flag
in the man page for unshare: “Fork the specified program as a child
process of unshare rather than running it directly. This is useful when
creating a new pid namespace.”

You can explore this by running ps to view the process hierarchy from a
second terminal window:

liz@myhost:~$ ps fa 
  PID TTY      STAT   TIME COMMAND 
... 
 924537 pts/0    Ss     0:00 -bash 
 924718 pts/0    S+     0:00  \_ sudo unshare --pid sh 
 924719 pts/1    Ss     0:00      \_ sudo unshare --pid sh 
 924720 pts/1    S+     0:00          \_ sh

As you saw in Chapter 2, sudo forks itself to provide a monitor process, and
then goes on to execute unshare. The sh process is not a child of
unshare; it’s a child of the (second) sudo process.

Now try the same thing with the --fork parameter:

liz@myhost:~$ sudo unshare --pid --fork sh 
$ whoami 
root 
$ whoami 
root

This is progress, in that you can now run more than one command before
running into the “Cannot fork” error. If you look at the process hierarchy



again from a second terminal, you’ll see an important difference:

liz@myhost:~$ ps fa 
  PID TTY      STAT   TIME COMMAND 
... 
 924537 pts/0    Ss     0:00 -bash 
 925113 pts/0    S+     0:00  \_ sudo unshare --pid --fork sh 
 925114 pts/1    Ss     0:00      \_ sudo unshare --pid --fork sh 
 925115 pts/1    S      0:00          \_ unshare --pid --fork sh 
 925116 pts/1    S+     0:00              \_ sh 
 
...

With the --fork parameter, the sh shell is running as a child of the
unshare process, and you can successfully run as many different child
commands as you choose within this shell.

Given that the shell is within its own process ID namespace, the results of
running ps inside it might be surprising:

liz@myhost:~$ sudo unshare --pid --fork sh 
$ ps 
  PID TTY          TIME CMD 
      1 ?        00:03:27 systemd 
      2 ?        00:00:00 kthreadd 
      3 ?        00:00:00 pool_workqueue_release 
 
...many more lines of output about processes…… 
root      925540  925539  0 16:55 pts/1    00:00:00 unshare --pid 
--fork sh 
root      925541  925540  0 16:55 pts/1    00:00:00 sh 
root      925543  925541 99 16:56 pts/1    00:00:00 ps -eaf 
$ exit 
liz@myhost:~$

As you can see, ps is still showing all the processes on the whole host,
despite running inside a new process ID namespace. If you want the ps
behavior that you would see in a Docker container, it’s not sufficient just to
use a new process ID namespace, and the reason for this is included in the
man page for ps: “This ps works by reading the virtual files in /proc.”



Let’s take a look at the /proc directory to see what virtual files this is
referring to. Your system will look similar, but not exactly the same, as it
will be running a different set of processes:

liz@myhost:~$ ls /proc 
1      29      492628  64      acpi           loadavg 
10     29375   492642  65      bootconfig     locks 
10927  29451   492656  7       buddyinfo      mdstat 
1181   3       492664  72      bus            meminfo 
...many more lines...

Every numbered directory in /proc corresponds to a process ID, and there
is a lot of interesting information about a process inside its directory. For
example, /proc/<pid>/exe is a symbolic link to the executable that’s
being run inside this particular process, as you can see in the following
example:

liz@myhost:~$ ps 
  PID TTY          TIME CMD 
28441 pts/0    00:00:00 bash 
28558 pts/0    00:00:00 ps 
liz@myhost:~$ ls /proc/28441 
arch_status         fdinfo             ns             smaps_rollup 
attr                gid_map            numa_maps      stack 
autogroup           io                 oom_adj        stat 
auxv                ksm_merging_pages  oom_score      statm 
cgroup              ksm_stat           oom_score_adj  status 
clear_refs          latency            pagemap        syscall 
cmdline             limits             patch_state    task 
comm                loginuid           personality    
timens_offsets 
coredump_filter     map_files          projid_map     timers 
cpu_resctrl_groups  maps               root           
timerslack_ns 
cpuset              mem                sched          uid_map 
cwd                 mountinfo          schedstat      wchan 
environ             mounts             sessionid 
exe                 mountstats         setgroups 
fd                  net                smaps 
 
 
liz@myhost:~$ ls -l /proc/28441/exe 
lrwxrwxrwx 1 liz liz 0 Oct 10 13:32 /proc/28441/exe -> 
/usr/bin/bash



Irrespective of the process ID namespace it’s running in, ps is going to look
in /proc for information about running processes. In order to have ps
return only the information about the processes inside the new namespace,
there needs to be a separate copy of the /proc directory, where the kernel
can write information about the namespaced processes. Given that /proc is
a directory directly under root, this means changing the root directory.

Changing the Root Directory
From within a container, you don’t see the host’s entire filesystem; instead,
you see a subset, because the root directory gets changed as the container is
created.

You can change the root directory in Linux with the chroot command. This
effectively moves the root directory for the current process to point to some
other location within the filesystem. Once you have done a chroot command,
you lose access to anything that was higher in the file hierarchy than your
current root directory, since there is no way to go any higher than root within
the filesystem, as illustrated in Figure 3-1.

The description in chroot’s man page reads as follows: “Run COMMAND
with root directory set to NEWROOT. [… ] If no command is given, run
${SHELL} -i (default: /bin/sh -i).”

Figure 3-1. Changing root so a process only sees a subset of the filesystem



From this you can see that chroot doesn’t just change the directory, but
also runs a command, falling back to running a shell if you don’t specify a
different command.

Create a new directory and try to chroot into it:

liz@myhost:~$ mkdir new_root 
liz@myhost:~$ sudo chroot new_root 
chroot: failed to run command '/bin/bash': No such file or 
directory 
liz@myhost:~$ sudo chroot new_root ls 
chroot: failed to run command 'ls': No such file or directory 
        

This doesn’t work! The problem is that once you are inside the new root
directory, there is no bin directory inside this root, so it’s impossible to run
the /bin/bash shell. Similarly, if you try to run the ls command, it’s not
there. You’ll need the files for any commands you want to run to be
available within the new root. This is exactly what happens in a “real”
container: the container is instantiated from a container image, which
encapsulates the filesystem that the container sees. If an executable isn’t
present within that filesystem, the container won’t be able to find and run it.

Why not try running Alpine Linux within your container? Alpine is a fairly
minimal Linux distribution designed for containers. You’ll need to start by
downloading the filesystem1:

liz@myhost:~$ mkdir alpine 
liz@myhost:~$ cd alpine 
liz@myhost:~/alpine$ curl -o alpine.tar.gz https://dl-
cdn.alpinelinux.org/ 
alpine/v3.21/releases/x86_64/alpine-minirootfs-3.21.3-
x86_64.tar.gz 
  % Total    % Received % Xferd  Average Speed   Time    Time     
Time  Current 
                                 Dload  Upload   Total   Spent    
Left  Speed 
100 3425k  100 3425k    0     0  22.1M      0 --:--:-- --:--:-- -
-:--:-- 22.3M 
liz@myhost:~/alpine$ tar xvf alpine.tar.gz



At this point you have a copy of the Alpine filesystem inside the alpine
directory you created. Remove the compressed version and move back to the
parent directory:

lizt@myhost:~/alpine$ rm alpine.tar.gz 
liz@myhost:~/alpine$ cd ..

You can explore the contents of the filesystem with ls alpine to see that
it looks like the root of a Linux filesystem with directories such as bin,
lib, var, tmp, and so on.

Now that you have the Alpine distribution unpacked, you can use chroot
to move into the alpine directory, provided you supply a command that
exists within that directory’s hierarchy.

It’s slightly more subtle than that, because the executable has to be in the
new process’s path. This process inherits the parent’s environment, including
the PATH environment variable. The bin directory within alpine has
become /bin for the new process, and assuming that your regular path
includes /bin, you can pick up the ls executable from that directory
without specifying its path explicitly:

liz@myhost:~$ sudo chroot alpine ls 
bin    etc    lib    mnt    proc   run    srv    tmp    var 
dev    home   media  opt    root   sbin   sys    usr 
liz@myhost:~$

Notice that it is only the child process (in this example, the process that ran
ls) that gets the new root directory. When that process finishes, control
returns to the parent process. If you run a shell as the child process, it won’t
complete immediately, so that makes it easier to see the effects of changing
the root directory:

liz@myhost:~$ sudo chroot alpine sh 
/ $ ls 
bin    etc    lib    mnt    proc   run    srv    tmp    var 
dev    home   media  opt    root   sbin   sys    usr 
/ $ whoami 
root 



/ $ exit 
liz@myhost:~$

If you try to run the bash shell, it won’t work. This is because the Alpine
distribution doesn’t include it, so it’s not present inside the new root
directory. If you tried the same thing with the filesystem of a distribution
like Ubuntu, which does include bash, it would work.

To summarize, chroot literally “changes the root” for a process. After
changing the root, the process (and its children) will be able to access only
the files and directories that are lower in the hierarchy than the new root
directory.

NOTE
In addition to chroot, there is a more sophisticated version called pivot_root. For
the purposes of this chapter, whether chroot or pivot_root is used is an
implementation detail; the key point is that a container needs to have its own root
directory. I have used chroot in these examples because it is simpler and more familiar
to many people.

There are security advantages to using pivot_root over chroot, so in practice you
should find the former if you look at the source code of a container runtime
implementation. The main difference is that pivot_root takes advantage of the mount
namespace; the old root is no longer mounted and is therefore no longer accessible within
that mount namespace. The chroot system call doesn’t take this approach, leaving the
old root accessible via mount points.

You have now seen how a container can be given its own root filesystem. I’ll
discuss this further in Chapter 6, but right now let’s see how having its own
root filesystem allows the kernel to show a container just a restricted view of
namespaced resources.

Combine Namespacing and Changing the
Root



So far you have seen namespacing and changing the root as two separate
things, but you can combine the two by running chroot in a new
namespace:

liz@myhost:~$ sudo unshare --pid --fork chroot alpine sh 
/ $ ls 
bin    etc    lib    mnt    proc   run    srv    tmp    var 
dev    home   media  opt    root   sbin   sys    usr

If you recall from earlier in this chapter (see “solating Process IDs”), giving
the container its own root directory allows it to create a /proc directory for
the container that’s independent of /proc on the host. For this to be
populated with process information, you will need to mount it as a
pseudofilesystem of type proc. With the combination of a process ID
namespace and an independent /proc directory, ps will now show just the
processes that are inside the process ID namespace:

/ $ mount -t proc proc proc 
/ $ ps 
PID   USER     TIME  COMMAND 
    1 root      0:00 sh 
    5 root      0:00 ps 
/ $ exit 
liz@myhost:~$

Success! It has been more complex than isolating the container’s hostname,
but through the combination of creating a process ID namespace, changing
the root directory, and mounting a pseudofilesystem to handle process
information, you can limit a container so that it has a view only of its own
processes.

If this seems complex, you might like to know that the unshare command
has a --mount-proc option to simplify it.

liz@liz-tetragon:~$ sudo unshare --pid --fork --mount-proc bash  
root@liz-tetragon:/home/liz# ps 
    PID TTY          TIME CMD 
      1 pts/4    00:00:00 bash 
      8 pts/4    00:00:00 ps



There are more namespaces left to explore. Let’s see the mount namespace
next.

Mount Namespace
Typically you don’t want a container to have all the same filesystem mounts
as its host. Giving the container its own mount namespace achieves this
separation.

Here’s an example that creates a simple bind mount for a process with its
own mount namespace:

liz@myhost:~$ sudo unshare --mount sh 
$ mkdir source 
$ touch source/HELLO 
$ ls source 
HELLO 
$ mkdir target 
$ ls target 
$ mount --bind source target 
$ ls target 
HELLO

Once the bind mount is in place, the contents of the source directory are
also available in target. If you look at all the mounts from within this
process, there will probably be a lot of them, but the following command
finds the target you created if you followed the preceding example:

$ findmnt target 
TARGET       SOURCE                      FSTYPE OPTIONS 
/home/liz/target  
             /dev/sda1[/home/liz/source] ext4   
rw,relatime,discard,                     
                                                errors=remount-ro, 
commit=30

From the host’s perspective, this isn’t visible, which you can prove by
running the same command from another terminal window and confirming
that it doesn’t return anything.



Try running findmnt from within the mount namespace again, but this
time without any parameters, and you will get a long list. You might be
thinking that it seems wrong for a container to be able to see all the mounts
on the host. This is a very similar situation to what you saw with the process
ID namespace: the kernel uses the /proc/<PID>/mounts directory to
communicate information about mount points for each process. If you create
a process with its own mount namespace but it is using the host’s /proc
directory, you’ll find that its /proc/<PID>/mounts file includes all the
preexisting host mounts. (You can simply cat this file to get a list of
mounts.)

To get a fully isolated set of mounts for the containerized process, you will
need to combine creating a new mount namespace with a new root
filesystem and a new proc mount, like this:

liz@myhost:~$ sudo unshare --mount chroot alpine sh 
/ $ mount -t proc proc proc 
/ $ mount 
proc on /proc type proc (rw,relatime) 
/ $ mkdir source 
/ $ touch source/HELLO 
/ $ mkdir target 
/ $ mount --bind source target 
/ $ mount 
proc on /proc type proc (rw,relatime) 
/dev/root on /target type ext4 
(rw,relatime,discard,errors=remount-ro,commit=30)

Alpine Linux doesn’t come with the findmnt command, so this example
uses mount with no parameters to generate the list of mounts. (If you are
cynical about this change, try the earlier example with mount instead of
findmnt to check that you get the same results.)

You may be familiar with the concept of mounting host directories into a
container using docker run -v <host directory>:
<container directory> .... To achieve this, after the root
filesystem has been put in place for the container, the target container
directory is created and then the source host directory gets bind mounted



into that target. Because each container has its own mount namespace, host
directories mounted like this are not visible from other containers.

NOTE
If you create a mount that is visible to the host, it won’t automatically get cleaned up
when your “container” process terminates. You will need to destroy it using umount.
This also applies to the /proc pseudofilesystems. They won’t do any particular harm,
but if you like to keep things tidy, you can remove them with umount proc. The
system won’t let you unmount the final /proc used by the host.

Network Namespace
The network namespace allows a container to have its own view of network
interfaces and routing tables. When you create a process with its own
network namespace, you can see it with lsns:

liz@myhost:~$ sudo lsns -t net 
        NS TYPE NPROCS PID USER    NETNSID NSFS COMMAND 
4026531840 net     126   1 root unassigned      
/usr/lib/systemd/systemd --system --deserialize=80 
 
liz@myhost:~$ sudo unshare --net bash 
root@myhost:/home/liz$ lsns -t net 
        NS TYPE NPROCS    PID USER    NETNSID NSFS COMMAND 
4026531840 net     125      1 root unassigned      
/usr/lib/systemd/systemd --system --deserialize=80 
4026532277 net       2 927734 root unassigned      bash

NOTE
You might come across the ip netns command, but that is not much use to us here.
Using unshare --net creates an anonymous network namespace, and anonymous
namespaces don’t appear in the output from ip netns list.

When you put a process into its own network namespace, it starts with just
the loopback interface:



liz@myhost:~$ sudo unshare --net bash 
root@myhost:~$ ip a 
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default 
qlen 1000 
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

With nothing but a loopback interface, your container won’t be able to
communicate. To give it a path to the outside world, you create a virtual
Ethernet interface—or more strictly, a pair of virtual Ethernet interfaces.
These act as if they were the two ends of a metaphorical cable connecting
your container namespace to the default network namespace.

In a second terminal window, as root on the host, you can create a virtual
Ethernet pair by specifying the anonymous namespaces associated with their
process IDs, like this:

root@myhost:~$ ip link add ve1 netns 28586 type veth peer name ve2 
netns 1

ip link add

indicates that you want to add a link.

ve1

is the name of one “end” of the virtual Ethernet “cable.”

netns 28586

says that this end is “plugged in” to the network namespace associated
with process ID 28586 (which is shown in the output from lsns -t
net in the example at the start of this section).

type veth

shows that this a virtual Ethernet pair.

peer name ve2

gives the name of the other end of the “cable.”



netns 1

specifies that this second end is “plugged in” to the network namespace
associated with process ID 1.

The ve1 virtual Ethernet interface is now visible from inside the “container”
process:

root@myhost:~$ ip a 
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default 
qlen 1000 
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 
2: ve1@if3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN 
group ... 
    link/ether 7a:8a:3f:ba:61:2c brd ff:ff:ff:ff:ff:ff link-
netnsid 0

The link is in “DOWN” state and needs to be brought up before it’s any use.
Both ends of the connection need to be brought up.

Bring up the ve2 end on the host:

root@myhost:~$ ip link set ve2 up

And once you bring up the ve1 end in the container, the link should move to
“UP” state:

root@myhost:~$ ip link set ve1 up 
root@myhost:~$ ip a 
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default 
qlen 1000 
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 
2: ve1@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc 
noqueue state UP ... 
    link/ether 7a:8a:3f:ba:61:2c brd ff:ff:ff:ff:ff:ff link-
netnsid 0 
    inet6 fe80::788a:3fff:feba:612c/64 scope link 
       valid_lft forever preferred_lft forever



You can see that an IPv6 address has automatically been assigned to this
interface in the container. Let’s tell the host that the route to reach this
address is through its ve2 interface, and then you can perform IPv6 ping
from the host to the container:

root@myhost:~# ip -6 route add fe80::788a:3fff:feba:612c dev ve2 
ping6 fe80::788a:3fff:feba:612c 
PING fe80::788a:3fff:feba:612c (fe80::788a:3fff:feba:612c) 56 data 
bytes 
64 bytes from fe80::788a:3fff:feba:612c%ve2: icmp_seq=1 ttl=64 
time=0.160 ms 
64 bytes from fe80::788a:3fff:feba:612c%ve2: icmp_seq=2 ttl=64 
time=0.052 ms 
64 bytes from fe80::788a:3fff:feba:612c%ve2: icmp_seq=3 ttl=64 
time=0.072 ms

Unlike IPv6, addresses are not automatically added to IPv4-capable
interfaces, so if you want to send IPv4 traffic over the virtual ethernet
connection, you’ll need to define the IPv4 address at either end. In the
container:

root@myhost:~$ ip addr add 192.168.1.100/24 dev ve1

And on the host:

root@myhost:~$ ip addr add 192.168.1.200/24 dev ve2

This will also have the effect of adding an IP route into the routing table in
the container:

root@myhost:~$ ip route 
192.168.1.0/24 dev ve1 proto kernel scope link src 192.168.1.100

As mentioned at the start of this section, the network namespace isolates
both the interfaces and the routing table, so this routing information is
independent of the IP routing table on the host. At this point the container
can send traffic only to 192.168.1.0/24 addresses. You can test this
with a ping from within the container to the remote end:



root@myhost:~$ ping 192.168.1.200 
PING 192.168.1.200 (192.168.1.200) 56(84) bytes of data. 
64 bytes from 192.168.1.200: icmp_seq=1 ttl=64 time=0.355 ms 
64 bytes from 192.168.1.200: icmp_seq=2 ttl=64 time=0.035 ms 
^C

We will dig further into networking and container network security in
Chapter 10.

User Namespace
The user namespace allows processes to have their own view of user and
group IDs. Much like process IDs, the users and groups still exist on the
host, but they can have different IDs. The main benefit of this is that you can
map the root ID of 0 within a container to some other non-root identity on
the host. This is a huge advantage from a security perspective, since it
allows software to run as root inside a container, but an attacker who escapes
from the container to the host will have a non-root, unprivileged identity. As
you’ll see in Chapter 9, it’s not hard to misconfigure a container to make it
easy escape to the host. With user namespaces, you’re not just one false
move away from host takeover.

NOTE
User namespace support is enabled by default from Kubernetes 1.33 onwards, although
you need a Linux kernel version 6.3 or newer. It’s also supported in recent version of
container runtimes like containerd and runc, and can be enabled in Docker using the --
userns-remap flag on the daemon.

Generally speaking, you need to be root to create new namespaces (which is
why the Docker daemon runs as root, but the user namespace is an
exception:

liz@myhost:~$ unshare --user bash 
nobody@myhost:/home/liz$ id 
uid=65534(nobody) gid=65534(nogroup) groups=65534(nogroup) 

https://kubernetes.io/docs/concepts/workloads/pods/user-namespaces/#before-you-begin
https://docs.docker.com/engine/security/userns-remap/


nobody@myhost:/home/liz$ echo $$ 
31196

I’ll use the process ID returned by echo $$ in a moment. First, let’s notice
that inside the new user namespace the user has the nobody ID. You need
to put in place a mapping between user IDs inside and outside the
namespace, as shown in Figure 3-2.

Figure 3-2. Mapping a non-root user on the host to root in a container

This mapping exists in /proc/<pid>/uid_map, which you can edit as
root (on the host). There are three fields in this file:

The lowest ID to map from the child process’s perspective

The lowest corresponding ID that this should map to on the host

The number of IDs to be mapped



As an example, on my machine, the liz user has ID 1001. In order to have
liz get assigned the root ID of 0 inside the child process, the first two
fields are 0 and 1001. The last field can be 1 if you want to map only one ID
(which may well be the case if you want only one user inside the container).
Here’s the command I used in a second terminal window to set up that
mapping:

liz@myhost:~$ sudo echo '0 1001 1' > /proc/31196/uid_map

Inside its user namespace, the process has taken on the root identity. Don’t
be put off by the fact that the bash prompt still says “nobody”; this doesn’t
get updated unless you rerun the scripts that get run when you start a new
shell (e.g., ~/.bash_profile):

nobody@myhost:/home/liz$ id 
uid=0(root) gid=65534(nogroup) groups=65534(nogroup)

A similar mapping process using /proc/<pid>/gid_map can be used to
map the group(s) used inside the child process.

So now the process is running under root’s user ID, and in older versions of
Linux this used to be sufficient to get the full set of root’s capabilities. In
kernel 5.8 this was changed in important ways so that root in the child
process no longer automatically gets the privileges of root across the whole
host machine - it’s merely a “namespace root”. Let’s explore what that ID
looks like from the host’s perspective. Start by running a sleep command:

nobody@myhost:/home/liz$ sleep 100 # Remember prompt has not 
updated to show “root” 

In a second terminal, let’s see what this process looks like:

liz@myhost:~$ ps -eaf | grep sleep 
liz        84714   84272  0 17:33 pts/0    00:00:00 sleep 100 
liz        84716   82632  0 17:34 pts/1    00:00:00 grep --
color=auto sleep



The sleep command is being run under the unprivileged liz identity from
the host’s perspective, even though this looks like root inside the user
namespace.

This unprivileged user doesn’t have the CAP_SYS_ADMIN capability
required to create, say, a new UTS namespace.

nobody@myhost:~$ unshare --uts 
unshare: unshare failed: Operation not permitted

Earlier in this chapter when we looked at Isolating the Hostname I
mentioned that you need to be root to run unshare --uts successfully. It
would fail with “Operation not permitted” for exactly the same reason as in
this case - no CAP_SYS_ADMIN capability. However, the kernel does
permit a one-shot approach to creating other namespaces along with the user
namespace. A regular, unprivileged user on the host can run a command like
this:

liz@myhost:~$ unshare --user --uts sleep 100

Find the process ID for this sleep command in another terminal, and inspect
its namespaces:

liz@myhost:~$ lsns -p 87982 
        NS TYPE   NPROCS   PID USER COMMAND 
4026531834 time        4 15244 liz  -bash 
4026531835 cgroup      4 15244 liz  -bash 
4026531836 pid         4 15244 liz  -bash 
4026531839 ipc         4 15244 liz  -bash 
4026531840 net         4 15244 liz  -bash 
4026531841 mnt         4 15244 liz  -bash 
4026532267 user        1 87982 liz  ├─sleep 100 
4026532306 uts         1 87982 liz  └─sleep 100

You can see that the sleep process has inherited most of the namespaces, but
it has its own user and UTS namespaces.

So, an unprivileged user can create other namespaces after all! That seems
great - except done like this it’s not terribly useful. No extra capabilities are



given to the user, so trying to change the hostname won’t be permitted.

liz@myhost:~$ unshare --user --uts hostname hello  
hostname: you must be root to change the host name

Let’s see what happens if you try this as a privileged user.

liz@myhost:~$ sudo unshare --user --uts bash  
nobody@myhost:/home/liz$ hostname new  
hostname: you must be root to change the host name 
nobody@myhost:/home/liz$ id 
uid=65534(nobody) gid=65534(nogroup) groups=65534(nogroup)

The user inside the new namespace is nobody. There needs to be an
explicit mapping to set the UID 0 on the host to UID 0 inside the user
namespace. In a second terminal you could achieve this by writing a
uid_map file for the process similar to how we did earlier, or you can use a
convenient --map-root-user option on the unshare command.

liz@myhost:~$ sudo unshare --user --uts --map-root-user bash  
root@myhost:/home/liz# id 
uid=0(root) gid=65534(nogroup) groups=65534(nogroup) 
root@myhost:/home/liz# cat /proc/$$/uid_map 
         0          0          1 
root@myhost:/home/liz# hostname new  
root@myhost:/home/liz# hostname 
new

If you’re running containers as a root user, you’ve seen that it’s easy to get
root privileges inside the container, and it’s also easy to set up the container
with a user namespace so that it doesn’t automatically get root privileges.
This is a security benefit because fewer containers need to run as “real” root
(that is, root from the perspective of the host).

If you want to run containers as an unprivileged user and get root privileges
inside the container, that’s a bit more tricky. This concept is called rootless
containers and we’ll come back to this in Chapter 9.



Inter-process Communications Namespace
In Linux it’s possible to communicate between different processes by giving
them access to a shared range of memory, or by using a shared message
queue. The two processes need to be members of the same inter-process
communications (IPC) namespace for them to have access to the same set of
identifiers for these mechanisms.

Generally speaking, you don’t want your containers to be able to access one
another’s shared memory, so they are given their own IPC namespaces.

You can see this in action by creating a shared memory block and then
viewing the current IPC status with ipcs:

$ ipcmk -M 1000 
Shared memory id: 0 
$ ipcs 
 
------ Message Queues -------- 
key        msqid      owner      perms      used-bytes   messages 
 
------ Shared Memory Segments -------- 
key        shmid      owner      perms      bytes      nattch     
status 
0x74e9655a 0          root       644        1000       0  
 
------ Semaphore Arrays -------- 
key        semid      owner      perms      nsems

In this example, the newly created shared memory block (with its ID in the
shmid column) appears in the “Shared Memory Segments” block. A
process with its own IPC namespace does not see any of these IPC objects:

$ sudo unshare --ipc sh 
$ ipcs 
 
------ Message Queues -------- 
key        msqid      owner      perms      used-bytes   messages 
 
------ Shared Memory Segments -------- 
key        shmid      owner      perms      bytes      nattch     
status 
 



------ Semaphore Arrays -------- 
key        semid      owner      perms      nsems

Cgroup Namespace
Since the introduction of the cgroup namespace in Linux kernel 4.6, and the
adoption of cgroups v2 (discussed in Chapter 1), the use of the cgroup
namespace has been key for containers and container management tools,
because the cgroup has become a way to identify the parent container for a
process .

The cgroup namespace is a little bit like a chroot for the cgroup filesystem; it
stops a process from seeing the cgroup configuration higher up in the
hierarchy of cgroup directories than its own cgroup.

NOTE
This section assumes that you’re using cgroups v2. If you need to revisit how they work,
you’ll find them discussed in Chapter 1.

You can see the cgroup namespace in action by comparing the contents of
/proc/self/cgroup outside and then inside a cgroup namespace:

lizt@myhost:~$ cat /proc/self/cgroup 
0::/user.slice/user-1001.slice/session-357.scope 
@myhost:~$ 
liz@myhost:~$ sudo unshare --cgroup bash 
root@myhost:/home/liz# cat /proc/self/cgroup 
 
0::/

The process sees a root-level cgroup. However, this process has full access
to the root filesystem so looking at /sys/fs/cgroup shows the hosts
cgroup hierarchy. For example, looking at the contents of
/sys/fs/cgroup/cgroup.procs would show a lot of processes that
are nothing to do with this process and its own control group. Similarly to
how a container needs its own view of /proc to get a correct view of the



processes inside its process ID namespace, so it needs its own version of
/sys/fs/cgroup. As before, you’ll need to create a mount namespace
and change the root directory - in this example I am using the alpine root
filesystem that we used earlier:

liz@myhost:~$ sudo unshare --cgroup --mount chroot alpine sh  
/ # mkdir -p /sys/fs/cgroup  
/ # mount -t cgroup2 none /sys/fs/cgroup  
/ # ls /sys/fs/cgroup  
cgroup.controllers      cpu.stat.local          memory.reclaim 
cgroup.events           cpu.uclamp.max          memory.stat 
cgroup.freeze           cpu.uclamp.min          
memory.swap.current 
cgroup.kill             cpu.weight              memory.swap.events 
cgroup.max.depth        cpu.weight.nice         memory.swap.high 
cgroup.max.descendants  io.pressure             memory.swap.max 
cgroup.pressure         memory.current          memory.swap.peak 
cgroup.procs            memory.events           
memory.zswap.current 
cgroup.stat             memory.events.local     memory.zswap.max 
cgroup.subtree_control  memory.high             
memory.zswap.writeback 
cgroup.threads          memory.low              pids.current 
cgroup.type             memory.max              pids.events 
cpu.idle                memory.min              pids.events.local 
cpu.max                 memory.numa_stat        pids.max 
cpu.max.burst           memory.oom.group        pids.peak 
cpu.pressure            memory.peak 
cpu.stat                memory.pressure

The cgroup pseudo filesystem has been populated with all the information
you might expect, but there is still one problem - the process IDs reflected
here reflect the host’s view of processes. You’ll need a process ID
namespace too for this to work completely as expected.

liz@myhost:~$ sudo unshare --mount --pid --fork --cgroup bash  
root@myhost:/home/liz# mount -t proc proc alpine/proc  
root@myhost:/home/liz# mount -t cgroup2 none alpine/sys/fs/cgroup  
root@myhost:/home/liz# chroot alpine sh  
/ # ps 
PID   USER     TIME  COMMAND 
    1 root      0:00 bash 
   22 root      0:00 sh 
   23 root      0:00 ps 



/ # cat /sys/fs/cgroup/cgroup.procs 
0 
0 
0 
0 
0 
0 
1 
22 
26

This looks pretty consistent with what you might expect, but what are those
0 entries in the cgroup.procs file? The answer is that these are processes
in this cgroup that are outside the process ID namespace. The child process
has its own view of cgroups, but it is still a member of the cgroup of its
parent. The parent process can create a cgroup for the child by creating a
new directory in /sys/fs/cgroup and write the child’s process ID into
the cgroup.procs.

Time Namespace
Using the time namespace, a process can adjust its own
CLOCK_MONOTONIC and CLOCK_BOOTTIME, making it seem as if
the system booted at a different time. It’s intended for seamless process
migration between systems, for example allowing timers and sleeps to pick
up where they left off, and it can be used to reproduce issues that are time-
dependent (for example, if a variable’s value is generated based on time).

But can you imagine the confusion caused if different containers in a
distributed system all have a different view of time? For starters, trying to
co-ordinate logs and metrics across different containers would get really
complex! It could also open up opportunities for an attacker to obfuscate
malicious activity by making it appear to happen in the past or the future.
For this reason I’m not aware of any container systems that make use of the
time namespace.

You have now explored all the different types of namespace and have seen
how they are used along with chroot to isolate a process’s view of its



surrounding. Combine this with what you learned about cgroups in the
previous chapter, and you should have a good understanding of everything
that’s needed to make what we call a “container.”

Before moving on to the next chapter, it’s worth taking a look at a container
from the perspective of the host it’s running on.

Container Processes from the Host
Perspective
Although they are called containers, it might be more accurate to use the
term “containerized processes.” A container is still a Linux process running
on the host machine, but it has a limited view of that host machine, and it
has access to only a subtree of the filesystem and perhaps to a limited set of
resources restricted by cgroups. Because it’s really just a process, it exists
within the context of the host operating system, and it shares the host’s
kernel as shown in Figure 3-3.



Figure 3-3. Containers share the host’s kernel

You’ll see how this compares to virtual machines in the next chapter, but
before that, let’s examine in more detail the extent to which a containerized
process is isolated from the host, and from other containerized processes on
that host, by trying some experiments on a Docker container. Start a
container process based on Ubuntu (or your favorite Linux distribution) and
run a shell in it, and then run a long sleep in it as follows:

$ docker run --rm -it ubuntu bash 
root@1551d24a $ sleep 1000

This example runs the sleep command for 1,000 seconds, but note that the
sleep command is running as a process inside the container. When you
press Enter at the end of the sleep command, this triggers Linux to clone a
new process with a new process ID and to run the sleep executable within
that process.



You can put the sleep process into the background (Ctrl-Z to pause the
process, and bg %1 to background it). Now run ps inside the container to
see the same process from the container’s perspective:

me@myhost:~$ docker run --rm -it ubuntu bash 
root@ab6ea36fce8e:/$ sleep 1000 
^Z 
[1]+  Stopped                 sleep 1000 
root@ab6ea36fce8e:/$ bg %1 
[1]+ sleep 1000 & 
root@ab6ea36fce8e:/$ ps 
  PID TTY          TIME CMD 
    1 pts/0    00:00:00 bash 
   10 pts/0    00:00:00 sleep 
   11 pts/0    00:00:00 ps 
root@ab6ea36fce8e:/$

While that sleep command is still running, open a second terminal into the
same host and look at the same sleep process from the host’s perspective:

me@myhost:~$ ps -C sleep 
  PID TTY          TIME CMD 
30591 pts/0    00:00:00 sleep

The -C sleep parameter specifies that we are interested only in processes
running the sleep executable.

The container has its own process ID namespace, so it makes sense that its
processes would have low numbers, and that is indeed what you see when
running ps in the container. From the host’s perspective, however, the sleep
process has a different, high-numbered process ID. In the preceding
example, there is just one process, and it has ID 30591 on the host and 10 in
the container. (The actual number will vary according to what else is and has
been running on the same machine, but it’s likely to be a much higher
number.)

To get a good understanding of containers and the level of isolation they
provide, it’s really key to get to grips with the fact that although there are
two different process IDs, they both refer to the same process. It’s just that
from the host’s perspective it has a higher process ID number.



The fact that container processes are visible from the host is one of the
fundamental differences between containers and virtual machines. An
attacker who gets access to the host can observe and affect all the containers
running on that host, especially if they have root access. And as you’ll see in
Chapter 9, there are some remarkably easy ways you can inadvertently make
it possible for an attacker to move from a compromised container onto the
host.

Container Host Machines
As you have seen, containers and their host share a kernel, and this has some
consequences for what are considered best practices relating to the host
machines for containers. If a host gets compromised, all the containers on
that host are potential victims, especially if the attacker gains root or
otherwise elevated privileges (such as being a member of the docker
group that can administer containers where Docker is used as the runtime).

It’s highly recommended to run container applications on dedicated host
machines (whether they be VMs or bare metal), and the reasons mostly
relate to security:

Using an orchestrator to run containers means that humans need
little or no access to the hosts. If you don’t run any other
applications, you will need a very small set of user identities on the
host machines. These will be easier to manage, and attempts to log
in as an unauthorized user will be easier to spot.

You can use any Linux distribution as the host OS for running
Linux containers, but there are several “Thin OS” distros
specifically designed for running containers. These reduce the host
attack surface by including only the components required to run
containers. Examples include Flatcar, Talos and Bottlerocket. With
fewer components included in the host machine, there is a smaller
chance of vulnerabilities (see Chapter 7) in those components.



All the host machines in a cluster can share the same configuration,
with no application-specific requirements. This makes it easy to
automate the provisioning of host machines, and it means you can
treat host machines as immutable. If a host machine needs an
upgrade, you don’t patch it; instead, you remove it from the cluster
and replace it with a freshly installed machine. Treating hosts as
immutable makes intrusions easier to detect.

I’ll come back to the advantages of immutability in Chapter 6.

Using a Thin OS reduces the set of configuration options but doesn’t
eliminate them completely. For example, you will have a container runtime
(perhaps containerd) plus orchestrator code (perhaps the Kubernetes kubelet)
running on every host. These components have numerous settings, some of
which affect security. The Center for Internet Security (CIS) publishes
benchmarks for best practices for configuring and running various software
components, including Docker, Kubernetes, and Linux.

In an enterprise environment, look for a container security solution that also
protects the hosts by reporting on vulnerabilities and worrisome
configuration settings. You will also want logs and alerts for logins and login
attempts at the host level.

Summary
Congratulations! Since you’ve reached the end of this chapter, you should
now know what a container really is. You’ve seen the three essential Linux
kernel mechanisms that are used to limit a process’s access to host resources:

Namespaces limit what the container process can see—for example,
by giving the container an isolated set of process IDs.

Changing the root limits the set of files and directories that the
container can see.

Cgroups control the resources the container can access.

https://cisecurity.org/


As you saw in Chapter 1, isolating one workload from another is an
important aspect of container security. You now should be fully aware that
all the containers on a given host (whether it is a virtual machine or a bare-
metal server) share the same kernel. Of course, the same is true in a
multiuser system where different users can log in to the same machine and
run applications directly. However, in a multiuser system, the administrators
are likely to limit the permissions given to each user; they certainly won’t
give them all root privileges. With containers—at least at the time of writing
—they all run as root by default and are relying on the boundary provided by
namespaces, changed root directories, and cgroups to prevent one container
from interfering with another.

In Chapter 5 we’ll explore options for strengthening the security boundary
around each container, but next let’s delve into how virtual machines work.
This will allow you to consider the relative strengths of the isolation
between containers and between VMs, especially through the lens of
security.

1  In this example I have used the version built for an x86-based architecture. If you’re running
on an ARM machine, you’ll want to replace x86_64 with aarch64. The latest releases of
Alpine are available at https://alpinelinux.org/releases/.

https://alpinelinux.org/releases/


Chapter 4. Virtual Machines

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 5th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you’d like to be actively involved in reviewing and commenting on
this draft, please reach out to the editor at rfernando@oreilly.com.

Containers are often compared with virtual machines (VMs), especially in
terms of the isolation that they offer. Let’s make sure you have a solid
understanding of how VMs operate so that you can reason about the
differences between them and containers. This will be particularly useful
when you want to assess the security boundaries around your applications
when they run in containers, or in different VMs. When you are discussing
the relative merits of containers from a security perspective, understanding
how they differ from VMs can be a useful tool.

This isn’t a black-and-white distinction, really. As you’ll see in Chapter 5,
there are several sandboxing tools that strengthen the isolation boundaries
around containers, making them more like VMs. If you want to understand
the security pros and cons of these approaches, it’s best to start with a firm
understanding of the difference between a VM and a “normal” container.

The fundamental difference is that a VM runs an entire copy of an operating
system, including its kernel, whereas a container shares the host machine’s
kernel. To understand what that means, you’ll need to know something
about how virtual machines are created and managed by a Virtual Machine



Monitor (VMM). Let’s start to set the scene for that by thinking about what
happens when a computer boots up.

Booting Up a Machine
Picture a physical server. It has some CPUs, memory, and networking
interfaces. When you first boot up the machine, an initial program runs
that’s called the BIOS, or Basic Input Output System. It scans how much
memory is available, identifies the network interfaces, and spots any other
devices such as displays, keyboards, attached storage devices, and so on.

In practice, a lot of this functionality has been superseded nowadays by
UEFI (Unified Extensible Firmware Interface), but for the sake of
argument, let’s just think of this as a modern BIOS.

Once the hardware has been enumerated, the system runs a bootloader that
loads and then runs the operating system’s kernel code. The operating
system could be Linux, Windows, or some other OS. As you saw in
Chapter 1, kernel code operates at a higher level of privilege than your
application code. This privilege level allows it to interact with memory,
network interfaces, and so on, whereas applications running in user space
can’t do this directly.

On an x86 processor, privilege levels are organized into rings, with Ring 0
being the most privileged and Ring 3 being the least privileged. For most
operating systems in a regular setup (without VMs), the kernel runs at Ring
0 and user space code runs at Ring 3, as shown in Figure 4-1.



Figure 4-1. Privilege rings

Kernel code (like any code) runs on the CPU in the form of machine code
instructions, and these instructions can include privileged instructions for
accessing memory, starting CPU threads, and so on. The details of
everything that can and will happen while the kernel initializes are beyond
the scope of this book, but essentially the goal is to mount the root
filesystem, set up networking, and bring up any system daemons. (If you
want to dive deeper, there is a lot of great information on Linux kernel
internals, including the bootstrap process, on GitHub.)

Once the kernel has finished its own initialization, it can start running
programs in user space. The kernel is responsible for managing everything
that the user space programs need. It starts, manages, and schedules the
CPU threads that these programs run in, and it keeps track of these threads
through its own data structures that represent processes. One important
aspect of kernel functionality is memory management. The kernel assigns
blocks of memory to each process and makes sure that processes can’t
access one another’s memory blocks.

https://oreil.ly/GPutF


Enter the VMM
As you have just seen, in a regular setup, the kernel manages the machine’s
resources directly. In the world of virtual machines, a Virtual Machine
Monitor (VMM) does the first layer of resource management, splitting up
the resources and assigning them to virtual machines. Each virtual machine
gets a kernel of its own.

For each virtual machine that it manages, the VMM assigns some memory
and CPU resources, sets up some virtual network interfaces and other
virtual devices, and starts a guest kernel with access to these resources.

In a regular server, the BIOS gives the kernel the details of the resources
available on the machine; in a virtual machine situation, the VMM divides
up those resources and gives each guest kernel only the details of the subset
that it is being given access to. From the perspective of the guest OS, it
thinks it has direct access to physical memory and devices, but in fact it’s
getting access to an abstraction provided by the VMM.

The VMM is responsible for making sure that the guest OS and its
applications can’t breach the boundaries of the resources it has been
allocated. For example, the guest operating system is assigned a range of
memory on the host machine. If the guest somehow tries to access memory
outside that range, this is forbidden.

There are two main forms of VMM, often called, not very imaginatively,
Type 1 and Type 2. And there is a bit of gray area between the two,
naturally!

Type 1 VMMs, or Hypervisors
In a regular system, the bootloader runs an operating system kernel like
Linux or Windows. In a pure Type 1 virtual machine environment, a
dedicated kernel-level VMM program runs instead.

Type 1 VMMs are also known as hypervisors, and examples include Hyper-
V, Xen, and ESX/ESXi. As you can see in Figure 4-2, the hypervisor runs

https://oreil.ly/FsXVi
https://xenproject.org/
https://oreil.ly/ezG3t


directly on the hardware (or “bare metal”), with no operating system
underneath it.

Figure 4-2. Type 1 Virtual Machine Monitor, also known as a hypervisor

In saying “kernel level,” I mean that the hypervisor runs at Ring 0. (Well,
that’s true until we consider hardware virtualization later in this chapter, but
for now let’s just assume Ring 0.) The guest OS kernel runs at Ring 1, as
depicted in Figure 4-3, which means it has less privilege than the
hypervisor.



Figure 4-3. Privilege rings used under a hypervisor

Type 2 VMM
When you run virtual machines on your laptop or desktop machine, perhaps
through something like VirtualBox, they are “hosted” or Type 2 VMs. Your
laptop might be running, say, macOS, which is to say that it’s running a
macOS kernel. You install VirtualBox as a separate application, which then
goes on to manage guest VMs that coexist with your host operating system.
Those guest VMs could be running Linux or Windows. Figure 4-4 shows
how the guest OS and host OS coexist.

https://www.virtualbox.org/


Figure 4-4. Type 2 Virtual Machine Monitor

Consider that for a moment and think about what it means to run, say,
Linux within a macOS. By definition this means there has to be a Linux
kernel, and that has to be a different kernel from the host’s macOS kernel.

The VMM application has user space components that you can interact with
as a user, but it also installs privileged components allowing it to provide
virtualization. You’ll see more about how this works later in this chapter.

Besides VirtualBox, other examples of Type 2 VMMs include Parallels and
QEMU.

Kernel-Based Virtual Machines
I promised that there would be some blurred boundaries between Type 1
and Type 2. In Type 1, the hypervisor runs directly on bare metal; in Type 2,
the VMM runs in user space on the host OS. What if you run a virtual
machine manager within the kernel of the host OS?

This is exactly what happens with a Linux kernel module called KVM, or
Kernel-based Virtual Machines, as shown in Figure 4-5.

https://parallels.com/
https://oreil.ly/LZmcn


Figure 4-5. KVM

Generally, KVM is considered to be a Type 1 hypervisor because the guest
OS doesn’t have to traverse the host OS, but I’d say that this categorization
is overly simplistic.

KVM is often used with QEMU (Quick Emulation), which I listed earlier as
a Type 2 hypervisor. QEMU dynamically translates system calls from the
guest OS into host OS system calls. It’s worth a mention that QEMU can
take advantage of hardware acceleration offered by KVM.

Whether Type 1, Type 2, or something in between, VMMs employ similar
techniques to achieve virtualization. The basic idea is called “trap-and-
emulate,” though as we’ll see, x86 processors provide some challenges in
implementing this idea.

Trap-and-Emulate
Some CPU instructions are privileged, meaning they can be executed only
in Ring 0; if they are attempted in a higher ring, this will cause a trap. You
can think of the trap as being like an exception in application software that
triggers an error handler; a trap will result in the CPU calling to a handler in
the Ring 0 code.

If the VMM runs at Ring 0 and the guest OS kernel code runs at a lower
privilege, a privileged instruction run by the guest can invoke a handler in
the VMM to emulate the instruction. In this way the VMM can ensure that



the guest OSs can’t interfere with each other through privileged
instructions.

Unfortunately, privileged instructions are only part of the story. The set of
CPU instructions that can affect the machine’s resources is known as
sensitive. The VMM needs to handle these instructions on behalf of the
guest OS, because only the VMM has a true view of the machine’s
resources. There is also another class of sensitive instructions that behaves
differently when executed in Ring 0 or in lower-privileged rings. Again, a
VMM needs to do something about these instructions because the guest OS
code was written assuming the Ring 0 behavior.

If all sensitive instructions were privileged, this would make life relatively
easy for VMM programmers, as they would just need to write trap handlers
for all these sensitive instructions. Unfortunately, not all x86 sensitive
instructions are also privileged, so VMMs need to use different techniques
to handle them. Instructions that are sensitive but not privileged are
considered to be “non-virtualizable.”

Handling Non-Virtualizable Instructions
There are a few different techniques for handling these non-virtualizable
instructions:

One option is binary translation. All the non-privileged, sensitive
instructions in the guest OS are spotted and rewritten by the VMM
in real time. This is complex, and newer x86 processors support
hardware-assisted virtualization to simplify binary translation.

Another option is paravirtualization. Instead of modifying the
guest OS on the fly, the guest OS is rewritten to avoid the non-
virtualizable set of instructions, effectively making system calls to
the hypervisor. This is the technique used by the Xen hypervisor.

Hardware virtualization (such as Intel’s VT-x) allows hypervisors
to run in a new, extra privileged level known as VMX root mode,



which is essentially Ring –1. This allows the VM guest OS kernels
to run at Ring 0 (or VMX non-root mode), as they would if they
were the host OS.

NOTE
If you would like to dig deeper into how virtualization works, Keith Adams and Ole
Agesen provide a useful comparison and describe how hardware enhancements enable
better performance.

Now that you have a picture of how virtual machines are created and
managed, let’s consider what this means in terms of isolating one process,
or application, from another.

Process Isolation and Security
Making sure that applications are safely isolated from each other is a
primary security concern. If my application can read the memory that
belongs to your application, I will have access to your data.

Physical isolation is the strongest form of isolation possible. If our
applications are running on entirely separate physical machines, there is no
way for my code to get access to the memory of your application.

As we have just discussed, the kernel is responsible for managing its user
space processes, including assigning memory to each process. It’s up to the
kernel to make sure that one application can’t access the memory assigned
to another. If there is a bug in the way that the kernel manages memory, an
attacker might be able to exploit that bug to access memory that they
shouldn’t be able to reach. And while the kernel is extremely battle-tested,
it’s also extremely large and complex, and it is still evolving. Even though
we don’t know of significant flaws in kernel isolation as of this writing, I
wouldn’t advise you to bet against someone finding problems at some point
in the future.

https://oreil.ly/D1cZO


These flaws can come about due to increased sophistication in the
underlying hardware. In recent years, CPU manufacturers developed
“speculative processing,” in which a processor runs ahead of the currently
executing instruction and works out what the results are going to be ahead
of actually needing to run that branch of code. This enabled significant
performance gains, but it also opened the door to the famous Spectre and
Meltdown exploits.

You might be wondering why people consider hypervisors to give greater
isolation to virtual machines than a kernel gives to its processes; after all,
hypervisors are also managing memory and device access and have a
responsibility to keep virtual machines separate. It’s absolutely true that a
hypervisor flaw could result in a serious problem with isolation between
virtual machines. The difference is that hypervisors have a much, much
simpler job. In a kernel, user space processes are allowed some visibility of
each other; as a very simple example, you can run ps and see the running
processes on the same machine. You can (given the right permissions)
access information about those processes by looking in the /proc directory.
You are allowed to deliberately share memory between processes through
IPC and, well, shared memory. All these mechanisms, where one process is
legitimately allowed to discover information about another, make the
isolation weaker, because of the possibility of a flaw that allows this access
in unexpected or unintended circumstances.

There is no similar equivalent when running virtual machines; you can’t see
one machine’s processes from another. There is less code required to
manage memory simply because the hypervisor doesn’t need to handle
circumstances in which machines might share memory—it’s just not
something that virtual machines do. As a result, hypervisors are far smaller
and simpler than full kernels. There are well over 20 million lines of code in
the Linux kernel; by contrast, the Xen hypervisor is around 50,000 lines.

Where there is less code and less complexity, there is a smaller attack
surface, and the likelihood of an exploitable flaw is less. For this reason,
virtual machines are considered to have strong isolation boundaries.

https://oreil.ly/FHKhp
https://oreil.ly/1MWub


That said, virtual machine exploits are not unheard of. Darshan Tank,
Akshai Aggarwal, and Nirbhay Chaubey describe a taxonomy of the
different types of attack, and the National Institute of Standards and
Technology (NIST) has published security guidelines for hardening
virtualized environments.

Disadvantages of Virtual Machines
At this point you might be so convinced of the isolation advantages of
virtual machines that you might be wondering why people use containers at
all! There are some disadvantages of VMs compared to containers:

Virtual machines have start-up times that are several orders of
magnitude greater than a container. After all, a container simply
means starting a new Linux process, not having to go through the
whole start-up and initialization of a VM. The relatively slow start-
up times of VMs means that they are sluggish for auto-scaling, not
to mention that fast start-up times are important when an
organization wants to ship new code frequently, perhaps several
times per day. (However, Amazon’s Firecracker, discussed in
“Firecracker” and Intel-backed Cloud Hypervisor offer VMs with
very fast start-up times, of the order of 100ms as of this writing.)

Containers give developers a convenient ability to “build once, run
anywhere” quickly and efficiently. It’s possible, but very slow, to
build an entire machine image for a VM and run it on one’s laptop,
but this technique hasn’t taken off in the developer community in
the way containers have.

In today’s cloud environments, when you rent a virtual machine
you have to specify its CPU and memory, and you pay for those
resources regardless of how much is actually used by the
application code running inside it.

Each virtual machine has the overhead of running a whole kernel.
By sharing a kernel, containers can be very efficient in both

https://oreil.ly/HCXBO
https://oreil.ly/W_b7o
http://ch08.html/#s_firecracker


resource use and performance.

When choosing whether to use VMs or containers, there are many trade-
offs to be made among factors such as performance, price, convenience,
risk, and the strength of security boundary required between different
application workloads.

Container Isolation Compared to VM
Isolation
As you saw in Chapter 3, containers are simply Linux processes with a
restricted view. They are isolated from each other by the kernel through the
mechanisms of namespaces, cgroups, and changing the root. These
mechanisms were created specifically to create isolation between processes.
However, the simple fact that containers share a kernel means that the basic
isolation is weaker compared to that of VMs.

However, all is not lost! You can apply additional security features and
sandboxing to strengthen this isolation, which I will explain in Chapter 5.
There are also very effective security tools that take advantage of the fact
that containers tend to encapsulate microservices, and I will cover these in
Chapter 13.

Summary
You should now have a good grasp of what virtual machines are. You have
learned why the isolation between virtual machines is considered strong
compared to container isolation, and why containers are generally not
considered suitably secure for hard multitenancy environments.
Understanding this difference is an important tool to have in your toolbox
when discussing container security.

Securing virtual machines themselves is outside the scope of this book,
although I touched on hardening container host configuration in “Container
Host Machines”.

http://ch04.html/#s_container_hosts


Later in this book you will see some examples in which the weaker
isolation of containers (in comparison to VMs) can easily be broken
through misconfiguration. Before we get to that, let’s make sure you are up
to speed on what’s inside a container image and how images can have a
significant bearing on security.



Chapter 5. Strengthening
Container Isolation

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 8th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you’d like to be actively involved in reviewing and commenting on
this draft, please reach out to the editor at rfernando@oreilly.com.

Back in Chapters 2 and 3, you saw how containers create some separation
between workloads even though they are running on the same host. In this
chapter, you’ll learn about some more advanced tools and techniques that
can be used to strengthen the isolation between workloads.

Suppose you have two workloads and you don’t want them to be able to
interfere with each other. One approach is to isolate them so that they are
unaware of each other, which at a high level is really what containers and
virtual machines are doing. Another approach is to limit the actions those
workloads can take so that even if one workload is somehow aware of the
other, it is unable to take actions to affect that workload. Isolating an
application so that it has limited access to resources is known as
sandboxing.

When you run an application as a container, the container acts as a
convenient object for sandboxing. Every time you start a container, you
know what application code is supposed to be running inside that container.



If the application were to be compromised, the attacker might try to run
code that is outside that application’s normal behavior. By using sandboxing
mechanisms, we can limit what that code can do, restricting the attacker’s
ability to affect the system.

Several of these sandboxing approaches involve applying a profile when
you start a container, where that profile defines operations that the container
can or can’t perform. There are also eBPF-based tools that can apply
sandboxing capabilities dynamically, so that the profile can be updated or
applied while a container is running. We’ll cover these in Chapter X.

The first sandboxing mechanism we’ll consider is seccomp.

Seccomp
In “System Calls”, you saw that system calls provide the interface for an
application to ask the kernel to perform certain operations on the
application’s behalf. Seccomp is a mechanism for restricting the set of
system calls that an application is allowed to make.

When it was first introduced to the Linux kernel back in 2005, seccomp (for
“secure computing mode”) meant that a process, once it had transitioned to
this mode, could make only a very few system calls:

sigreturn (return from a signal handler)

exit (terminate the process)

read and write, but only using file descriptors that were already
open before the transition to secure mode

Untrusted code could be run in this mode without being able to achieve
anything malicious. Unfortunately, the side effect is that lots of code
couldn’t really achieve anything at all useful in this mode. The sandbox was
simply too limited.

In 2012, a new approach called seccomp-bpf was added to the kernel. This
uses Berkeley Packet Filters to determine whether or not a given system

http://ch02.html/#s_system_calls


call is permitted, based on a seccomp profile applied to the process. Each
process can have its own profile

NOTE
Berkeley Packet Filters are a precursor to eBPF, which we’ll cover in Chapter X.

The BPF seccomp filter can look at the system call opcode and the
parameters to the call to make a decision about whether the call is permitted
by the profile. In fact, it’s slightly more complicated than that: the profile
indicates what to do when a syscall matches a given filter, with possible
actions including return an error, terminate the process, or call a tracer. But
for most uses in the world of containers, the profile either permits a system
call or returns an error, so you can think of it as whitelisting or blacklisting
a set of system calls.

This can be very useful in the container world because there are several
system calls that a containerized application really has no business trying to
make, except under extremely unusual circumstances. For example, you
really don’t want any of your containerized apps to be able to change the
clock time on the host machine, so it makes sense to block access to the
syscalls clock_adjtime and clock_settime. It’s unlikely that you
want containers to be making changes to kernel modules, so there is no
need for them to call create_module, delete_module, or
init_module. There is a keyring in the Linux kernel, and it isn’t
namespaced, so it’s a good idea to block containers from making calls to
request_key or keyctl.

The Docker default seccomp profile is part of the Moby open-source project
and blocks more than 40 of the 400+ syscalls (including all the examples
just listed) without ill effects on the vast majority of containerized
applications. Unless you have a reason not to do so, it’s a good default
profile to use.

https://oreil.ly/3sNNI


Kubernetes has supported the ability to configure a seccompProfile
setting in the podSecurityContext for a workload since version 1.22,
and the RuntimeDefault option for this setting uses the default profile
for the container runtime (for example containerd uses the
Moby/Docker profile). You might want to go even further and limit a
container to an even smaller group of syscalls—in an ideal world, there
would be a tailored profile for each application that permits precisely the set
of syscalls that it needs. There are a few different possible approaches to
creating this kind of profile:

You can use strace to trace out all the system calls being called
by your application. Jess Frazelle described how she did this to
generate and test the default Docker seccomp profile in this blog
post.

For Kubernetes deployments there is a Security Profiles Operator
that can record the syscalls used by an application and then apply
them as a profile. This tool can generate AppArmor and SELinux
profiles as well as seccomp - we’ll discuss those shortly.

If creating seccomp profiles yourself seems like a lot of effort, you
may wish to look at commercial container security tools, some of
which have the ability to observe individual workloads in order to
automatically generate custom seccomp profiles.

One thing to be aware of with seccomp profiles is that system calls continue
to evolve as Linux develops over time. Since writing the first edition of this
book, around 100 syscalls have been added to the kernel. Generally,
application developers don’t program directly to syscalls, as they are
abstracted by programming language libraries, and upgrading those libraries
can potentially mean a change to the underlying system calls that are used,
without this change being obvious to the application developers. A strict
seccomp profile might deny access to a new system call being legitimately
used, so whenever the host operating system is upgraded to a new kernel
version that includes new system calls, profiles might need to be updated
accordingly.

https://oreil.ly/ROlHh
https://github.com/kubernetes-sigs/security-profiles-operator/blob/main/installation-usage.md#record-profiles-from-workloads-with-profilerecordings


NOTE
If you are interested in the underlying technology behind strace, you might like to
watch this talk in which I create a very basic strace implementation in a few lines of
Go.

AppArmor
AppArmor (short for “Application Armor”) is one of a handful of Linux
security modules (LSM) that can be enabled in the Linux kernel. You can
check the LSMs available on a machine by looking at the contents of the
/sys/kernel/security/lsm file.

In AppArmor, a profile can be associated with an executable file,
determining what that file is allowed to do in terms of capabilities and file
access permissions. You’ll recall that these were both covered in Chapter 1.

Various container runtimes include support for AppArmor, including
Docker, containerd and crio.

AppArmor and other LSMs implement mandatory access controls. A
mandatory access control is set by a central administrator, and once set,
other users do not have any ability to modify the control or pass it on to
another user. This is in contrast to Linux file permissions, which are
discretionary access controls, in the sense that if my user account owns a
file, I could grant your user access to it (unless this is overridden by a
mandatory access control), or I could set it as unwritable even by my own
user account to prevent myself from inadvertently changing it. Using
mandatory access controls gives the administrator much more granular
control of what can happen on their system, in a way that individual users
can’t override.

AppArmor includes a “complain” mode in which you can run your
executable against a profile and any violations get logged. The idea is that
you can use these logs to update the profile, with the goal of eventually
seeing no new violations, at which point you start to enforce the

https://oreil.ly/SV6d-
https://gitlab.com/apparmor


profile.Once you have a profile, you install it under the /etc/apparmor
directory and run a tool called apparmor_parser to load it. See which
profiles are loaded by looking at
/sys/kernel/security/apparmor/profiles.

Running a container using docker run --security-
opt="apparmor:<profile name>" ... will constrain the container
to the behaviors permitted by the profile. By default Docker will apply a
default AppArmor profile which blocks various operations such as using
ptrace within a container. You can see the AppArmor profile applied to a
running container in the output from docker inspect <container
ID>, which shows output like this:

"AppArmorProfile": "docker-default"

You can add annotations to apply an AppArmor profile on a container in a
Kubernetes pod. The Security Profile Operator mentioned earlier can build
and apply AppArmor profiles specific to a workload.

SELinux
SELinux, or “Security-Enhanced Linux,” is another type of LSM. History
(or at least Wikipedia) relates that it has its roots in projects by the US
National Security Agency, and it’s now an open source project primarily
maintained by Red Hat. If you’re running a Red Hat distribution (RHEL,
Fedora or Centos Stream) on your hosts, there is a good chance that
SELinux is enabled already.

SElinux lets you constrain what a process is allowed to do in terms of its
interactions with files and other processes. Each process runs under an
SELinux domain—you can think of this as the context that the process is
running in—and every file has a type. You can inspect the SELinux
information associated with each file by running ls -lZ, and similarly
you can add -Z to the ps command to get the SELinux detail for processes.

https://oreil.ly/_l1O8
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A key distinction between SELinux permissions and regular DAC Linux
permissions (as seen Chapter 1) is that in SELinux, permissions have
nothing to do with the user identity—they are described entirely by labels.
That said, they work together, so an action has to be permitted by both DAC
and SELinux.

Every file on the machine has to be labeled with its SELinux information
before you can enforce policies. These policies can dictate what access a
process of a particular domain has to files of a particular type. In practical
terms, this means that you can limit an application to have access only to its
own files and prevent any other processes from being able to access those
files. In the event that an application becomes compromised, this limits the
set of files that it can affect, even if the normal discretionary access controls
would have permitted it. When SELinux is enabled, it has a mode in which
policy violations are logged rather than enforced (similar to what we saw in
AppArmor).

Manually creating an effective SELinux profile for an application takes in-
depth knowledge of the set of files that it might need access to, in both
happy and error paths, so that task may be best left to the app developer.
Some vendors provide profiles for their applications.

SELinux is tightly integrated with Red Hat-maintained container runtimes
podman and CRI-O. Under these runtimes, each container runs in its own
SELinux domain, and file volumes can be marked with the :z or :Z flags to
automatically relabel content for container access.

NOTE
If you are interested in learning more about SELinux, there is a good tutorial on the
subject by DigitalOcean, or you might prefer Dan Walsh’s visual guide.

The security mechanisms we have seen so far—seccomp, AppArmor, and
SELinux—all police a process’s behavior at a low level. Generating a
complete profile in terms of the precise set of systems calls or capabilities

https://oreil.ly/2Hx6b
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needed can be a difficult job, and a small change to an application can
require a significant change to the profile in order to run. The administrative
overhead of keeping profiles in line with applications as they change can be
a burden, and human nature means there is a tendency either to use loose
profiles or to turn them off altogether. The default Docker seccomp and
AppArmor profiles provide some useful guardrails if you don’t have the
resources to generate per-application profiles.

It’s worth noting, however, that although these protection mechanisms limit
what the user space application can do, there is still a shared kernel. A
vulnerability within the kernel itself, like Dirty COW, would not be
prevented by any of these tools.

So far in this chapter you have seen security mechanisms that can be
applied to a container to limit what that container is permitted to do. Now
let’s turn to a set of sandboxing techniques that fall somewhere between
container and virtual machine isolation, starting with gVisor.

gVisor
Google’s gVisor sandboxes a container by intercepting system calls in much
the same way that a hypervisor intercepts the system calls of a guest virtual
machine.

According to the gVisor documentation, gVisor is a “user-space kernel,”
which strikes me as a contradiction in terms but is meant to describe how a
number of Linux system calls are implemented in user space through
paravirtualization. As you saw in Chapter 4, paravirtualization means
reimplementing instructions that would otherwise be run by the host kernel.

To do this, a component of gVisor called the Sentry intercepts syscalls from
the application. Sentry is heavily sandboxed using seccomp, such that it is
unable to access filesystem resources itself. When it needs to make system
calls related to file access, it off-loads them to an entirely separate process
called the Gofer.

https://oreil.ly/qQiJL
https://gvisor.dev/docs


Even those system calls that are unrelated to filesystem access are not
passed through to the host kernel directly but instead are reimplemented
within the Sentry. Essentially it’s a guest kernel, operating in user space.

The gVisor project provides an executable called runsc that is compatible
with OCI-format bundles and acts very much like the regular runc OCI
runtime that we met in Chapter 6. Running a container with runsc allows
you to easily see the gVisor processes. In the following example I am
running the same bundle for Alpine Linux that I used in “OCI Standards”:

$ cd alpine-bundle 
$ sudo runsc run sh

In a second terminal you can use runsc list to see containers created
by runsc:

$ runsc list 
ID  PID    STATUS   BUNDLE                        CREATED          
OWNER 
sh  32258  running  /home/liz/alpine-bundle   2019-08-26T13:51:21  
root

Inside the container, run a sleep command for long enough that you can
observe it from the second terminal. The runsc ps <container ID>
shows the processes running inside the container:

$ runsc ps sh 
UID       PID       PPID      C         STIME     TIME      CMD 
0         1         0         0         14:06     10ms      sh 
0         15        1         0         14:15     0s        sleep

So far, so much as expected, but things get very interesting if you start to
look at the processes from the host’s perspective (the output here was edited
to show the interesting parts):

$ ps fax 
  PID TTY      STAT   TIME COMMAND 
  ... 
3226 pts/1    S+     0:00  |      \_ sudo runsc run sh 

https://oreil.ly/cMROh
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3227 pts/1    Sl+    0:00  |          \_ runsc run sh 
3231 pts/1    Sl+    0:00  |              \_ runsc-gofer --
root=/var/run/runsc 
3234 ?        Ssl    0:00  |              \_ runsc-sandbox --
root=/var/run/runsc 
3248 ?        tsl    0:00  |                  \_ [exe] 
3257 ?        tl     0:00  |                      \_ [exe] 
3266 ?        tl     0:00  |                      \_ [exe] 
3270 ?        tl     0:00  |                      \_ [exe] 
  ...

You can see the runsc run process, which has spawned two processes:
one is for the Gofer; the other is runsc-sandbox but is referred to as the
Sentry in the gVisor documentation. Sandbox has a child process that in
turn has three children of its own. Looking at the process information for
these child and grandchild processes from the host’s perspective reveals
something interesting: all four of them are running the runsc executable.
For brevity the following example shows the child and one grandchild:

$ ls -l /proc/3248/exe 
lrwxrwxrwx 1 nobody nogroup 0 Aug 26 14:11 /proc/3248/exe -> 
/usr/local/bin/runsc 
$ ls -l /proc/3257/exe 
lrwxrwxrwx 1 nobody nogroup 0 Aug 26 14:13 /proc/3257/exe -> 
/usr/local/bin/runsc

Notably, none of these processes refers to the sleep executable that we
know is running inside the container because we can see it with runsc
ps. Trying to find that sleep executable more directly from the host is
also unsuccessful:

liz@myhost:~$ sudo ps -eaf | grep sleep 
liz  3554 3171  0 14:26 pts/2    00:00:00 grep --color=auto sleep

This inability to see the processes running inside the gVisor sandbox is
much more akin to the behavior you see in a regular VM than it is like a
normal container. And it affords extra protection for the processes running
inside the sandbox: even if an attacker gets root access on a host, there is
still a relatively strong boundary between the host and the running



processes. Or least there would be, were it not for the runsc command
itself! It offers an exec subcommand that we can use, as root on the host,
to operate inside a running container:

$ sudo runsc exec sh ps 
PID   USER     TIME  COMMAND 
    1 root      0:00 /bin/sh 
   21 root      0:00 sleep 100 
   22 root      0:00 ps

While this isolation looks very powerful, there are limitations:

The first is that not all Linux syscalls have been implemented in
gVisor. The project has a compatibility guide showing which
system calls have been implemented on Intel and ARM
architectures. As noted in that guide, many languages examine the
available system calls and can call back to alternatives at runtime,
so the majority of applications will function within gVisor.
However, if your application needs access to GPUs, this isn’t
supported.

The second is performance which will likely be impacted. The
gVisor project published a performance guide to help you explore
this in more detail. Essentially, gVisor deliberately chooses an
improved security model, sacrificing performance to achieve those
security goals.

Because gVisor reimplements large parts of the kernel, it’s complex, and
that complexity suggests a relatively high chance of including some
vulnerabilities of its own (like this privilege escalation discovered by Max
Justicz).

If you’re running on Google’s Cloud Platform, gVisor is readily available,
and you can also use it on self-managed, vanilla Kubernetes, but I’m not
aware of any other managed Kubernetes services that offer it.

As you have seen in this section, gVisor provides an isolation mechanism
that more closely resembles a virtual machine than a regular container.

https://gvisor.dev/docs/user_guide/compatibility/
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However, gVisor affects only the way that an application accesses system
calls. Namespaces, cgroups, and changing the root are still used to isolate
the container.

The rest of this chapter discusses approaches that use virtual machine
isolation for running containerized applications.

Kata Containers
As you’ve seen in Chapter 3, when you run a regular container, the
container runtime starts a new process within the host. The idea with Kata
Containers is to run containers within a separate virtual machine. This
approach gives the ability to run applications from regular OCI format
container images, with all the isolation of a virtual machine.

For each container, Kata creates a separate virtual machine using a “micro-
VMM” - a lightweight virtual machine monitor such as Firecracker, QEMU
or Cloud Hypervisor - we’ll consider these technologies shortly.

Like gVisor, Kata Containers make a trade-off between security and
performance. For many deployments, especially where workloads are
essentially trusted (for example, they are all created and operated by the
same business) the additional isolation is an unnecessary cost, requiring
additional memory, CPU, and impacting performance, and features like
shared volumes or GPU support may not be available.

Micro-VMMs
As you saw in “Disadvantages of Virtual Machines”, conventional virtual
machines are slow to start, making them unsuitable for the ephemeral
workloads that typically run in containers. But what if you had a virtual
machine that boots extremely quickly? Firecracker and Cloud Hypervisor
are both. minimal virtual machine monitors offering the benefits of secure
isolation through a hypervisor and no shared kernel, but designed
specifically for containers.

https://katacontainers.io/
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These projects are all written in Rust (which as a language provides
memory-safety guarantees that help to avoid vulnerabilities) and achieve
startup times around 100ms. Firecracker and Cloud Hypervisor are both
supported by Kata Containers for running in Kubernetes environments.

These “micro-VMMs” are able to start VMs so fast because they strip out
functionality that is generally included in a kernel but that isn’t required in a
container. Enumerating devices is one of the slowest parts of booting a
system, but containerized applications rarely have a reason to use many
devices. The main saving comes from a minimal device model that strips
out all but the essential devices.

There are some differences in philosophy and background between these
projects:

Firecracker originated in AWS and is used at scale for running
Lambda workloads. It is designed to provide the minimal
necessary functionality for running and isolating container
workloads with the fastest start-up times.

Cloud Hypervisor supports more complex workloads such as
nested virtualization, Windows as a guest OS, and GPU support.

There is one last approach to isolation that I’d like to mention in this
chapter. It’s rarely used in practice but I think it’s an interesting approach
that takes an even more extreme approach to reducing the size of the guest
operating system: Unikernels.

Unikernels
The operating system that runs in a virtual machine image is a general-
purpose offering that you can reuse for any application. It stands to reason
that apps are unlikely to use every feature of the operating system. If you
were able to drop the unused parts, there would be a smaller attack surface.

The idea of Unikernels is to create a dedicated machine image consisting of
the application and the parts of the operating system that the app needs.



This machine image can run directly on the hypervisor, giving the same
levels of isolation as regular virtual machines, but with a lightweight startup
time similar to what we see in Firecracker.

Every application has to be compiled into a Unikernel image complete with
everything it needs to operate. The hypervisor can boot up this machine in
just the same way that it would boot a standard Linux virtual machine
image.

IBM’s Nabla project is mostly inactive now, but it made use of Unikernel
techniques for containers. Nabla containers use a highly restricted set of just
seven system calls, with this policed by a seccomp profile. All other system
calls from the application get handled within a Unikernel library OS
component. By accessing only a small proportion of the kernel, Nabla
containers reduce the attack surface. The downside is that you need to
rebuild your applications in Nabla container form.

Summary
In this chapter, you have seen that there are a variety of ways to isolate
instances of application code from one another, which look to some degree
like what we understand as a “container”:

Some options use regular containers, with additional security
mechanisms applied to bolster basic container isolation: seccomp,
AppArmor, SELinux. These are proven and battle-tested but also
renowned for how hard they are to manage effectively.

Where stronger boundaries are needed between containers, micro-
VMMs can provide the isolation of a virtual machine, but can
come with performance penalties.

There is a third category of sandboxing techniques such as gVisor
that fall somewhere between container and virtual machine
isolation.

https://oreil.ly/W_BRY


What’s right for your applications depends on your risk profile, and your
decision may be influenced by the options offered by your public cloud
and/or managed solution. You should also consider runtime security tools
(which we’ll come to in Chapter 13) as they offer a more flexible and
dynamic approach to sandboxing that might be more appropriate for your
deployments. These might be an alternative to static sandboxing profiles, or
they could be combined to provide defence in depth.

Regardless of the container runtime you use and the isolation it enforces,
there are ways that a user can easily compromise this isolation. Move on to
Chapter 9 to see how.



Chapter 6. Passing Secrets to
Containers

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 12th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you’d like to be actively involved in reviewing and commenting on
this draft, please reach out to the editor at rfernando@oreilly.com.

Application code often needs certain credentials to do its job. For example,
it may need a password to access a database, or a token giving it permission
to access a particular API. Credentials, or secrets, exist specifically to
restrict access to resources—the database or the API in these examples. It’s
important to make sure that the secrets themselves stay “secret” and, in
compliance with the principle of least privilege, are accessible only to
people or components who really need them.

This chapter starts by considering the desirable properties of secrets and
then explores the options for getting secret information into containers. It
ends with a discussion of native support for secrets in Kubernetes.

Secret Properties
The most obvious property of a secret is that it needs to be secret—that is, it
must be accessible only to the people (or things) that are supposed to have



access. Typically you ensure this secrecy by encrypting the secret data and
sharing the decryption key only with those entities that should have
permission to see the secret.

The secret should be stored in encrypted form so that it’s not accessible to
every user or entity that can access the data store. When the secret moves
from storage to wherever it’s used, it should also be encrypted so that it
can’t be sniffed from the network. Ideally, the secret should never be
written to disk unencrypted. When the application needs the unencrypted
version, it’s best if this is held only in memory.

It is perhaps tempting to imagine that once you have encrypted a secret, that
is the end of the matter, because you can pass it safely to another
component. However, the receiver would need to know how to decrypt the
information it received, and that entails a decryption key. This key is in
itself a secret, and the receiver would need to get hold of that somehow,
leading us back to the original question of how we can pass this next-level
secret safely.

You need to be able to revoke secrets—that is, make them invalid in the
event that the secret should no longer be trusted. This could happen if you
know or suspect that an unauthorized person has been able to access the
secret. You might also want to revoke secrets for straightforward
operational reasons, such as someone leaving the team.

You also want the ability to rotate or change secrets. You won’t necessarily
know if one of your secrets has been compromised, so by changing them
every so often you ensure that any attacker who has been able to access
some credentials will find that they stop working. It’s now well-recognized
that forcing humans to change passwords regularly is a bad idea, but
software components can cope fine with frequently changing credentials.

The life cycle of a secret should ideally be independent of the life cycle of
the component that uses it. This is desirable because it means you don’t
have to rebuild and redistribute the component when the secret changes.

The set of people who should have access to a secret is often much smaller
than the set of people who need access to the application source code that
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will use that secret, or who can perform deployments or administration on
(parts of) the deployment. For example, in a bank, it’s unlikely that
developers should have access to production secrets that would grant access
to account information. It’s quite common for secret access to be write-only
for humans: once a secret is generated (often automatically and at random),
there may never be a reason for a person to legitimately read the secret out
again.

It’s not just people who should be restricted from having access to secrets.
Ideally, the only software components that can read the secret should be
those that need access to it. Since we are concerned with containers, this
means exposing a secret only to those containers that actually need it to
function correctly.

Now that we have considered the preferred qualities of a secret, let’s turn to
the possible mechanisms that could be used to get a secret into the
application code running in a container.

Getting Information into a Container
Bearing in mind that a container is deliberately intended to be an isolated
entity, it should be no surprise that there is a limited set of possibilities for
getting information—including secret data—into a running container:

Data can be included in the container image, as a file in the image
root filesystem.

Environment variables can be defined as part of the configuration
that goes along with the image (see Chapter 6 for a reminder of
how the root filesystem and config information make up an image).

The container can receive information over a network interface.

Environment variables can be defined or overridden at the point
where the container is run (for example, including -e parameters
on a docker run command).



The container can mount a volume from the host, and read
information out of volumes on that host.

Let’s take each of these options in turn.

Storing the Secret in the Container Image
The first two of these options are unsuitable for secret data because they
require you to hardcode the secret into the image at build time. While this is
certainly possible, it is generally considered a bad idea:

The secret is viewable by anyone who has access to the source
code for the image. You might be thinking that the secret could be
encrypted rather than in plain text in the source code—but then
you’ll need to pass in another secret somehow so that the container
can decrypt it. What mechanism will you use to pass in this second
secret?

The secret can’t change unless you rebuild the container image, but
it would be better to decouple these two activities. Furthermore, a
centralized, automated system for managing secrets (like CyberArk
or Hashicorp Vault) can’t control the life cycle of a secret that is
hardcoded in the source.

Unfortunately, it is surprisingly common to find secrets baked into source
code. One reason is simply that developers don’t all know that it’s a bad
idea; another is that it’s all too easy to put the secrets directly into the code
as a shortcut during development or testing, with the intention of removing
them later—and then simply forget to come back and take them out.

Several image scanning tools (discussed in Chapter X) can help you spot
when secrets have been hard-coded into a container image, so you can
remove them and use a better mechanism instead!

If passing the secret at build time is off the table, the other options all pass
the secret when the container starts or is running.



Passing the Secret Over the Network
The third option, passing the secret over a network interface, requires your
application code to make the appropriate network calls to retrieve or receive
the information, and as a result it is the approach I have seen least often in
the wild.

In addition, there is the question of encrypting the network traffic that
carries the secret, which necessitates another secret, typically in the form of
an X.509 certificate (see Chapter 11). You could offload this part of the
problem to a service mesh, which can be configured to ensure that network
connections use encryption for security. We’ll discuss service meshes
further in Chapter X.

If you use managed services like AWS Secrets Manager or Hashicorp Vault
to hold secrets, your applications can retrieve secrets from them using an
interface that abstracts an underlying network communication with the
secrets service. Accessing these services also requires secret credentials
which have to be passed into the container using some other mechanism.

Passing Secrets in Environment Variables
The fourth option, passing secrets via environment variables, is generally
frowned upon for a couple of reasons:

In many languages and frameworks, a crash will result in the
system dumping debug information that may well include all the
environment settings. If this information gets passed to a logging
system, anyone who has access to the logs can see secrets passed in
as environment variables.

If you can run docker inspect (or an equivalent) on a
container, you get to see any environment variables defined for the
container, whether at build or at runtime. Administrators who have
good reasons for inspecting properties of a container don’t
necessarily need access to the secrets.



Here’s an example of extracting the environment variables from a container
image:

liz@myhost:~$ docker image inspect --format '{{.Config.Env}}' 
nginx 
[PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bi
n NGINX_VERSION=1.27.5 NJS_VERSION=0.8.10 NJS_RELEASE=1~bookworm 
PKG_RELEASE=1~bookworm DYNPKG_RELEASE=1~bookworm]

You can also easily inspect environment variables at runtime. This example
shows how the results include any definitions passed in on the run
command (EXTRA_ENV here).

liz@myhost:~$ docker run -e EXTRA_ENV=HELLO --rm -d nginx 
13bcf3c571268f697f1e562a49e8d545d78aae65b0a102d2da78596b655e2f9a 
liz@myhost:~$ docker container inspect --format '{{.Config.Env}}' 
13bcf 
[EXTRA_ENV=HELLO 
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 
NGINX_VERSION=1.27.5 NJS_VERSION=0.8.10 NJS_RELEASE=1~bookworm 
PKG_RELEASE=1~bookworm DYNPKG_RELEASE=1~bookworm]

The 12-factor app manifesto encouraged developers to pass configuration
through environment variables, so in practice you may find yourself
running third-party containers that expect to be configured this way,
including some secret values. You can mitigate the risk of environment
variable secrets in a few ways (which may or may not be worthwhile,
depending on your risk profile):

You could process output logs to remove or obscure the secret
values.

You can modify the app container (or use a sidecar container) to
retrieve the secrets from a secure store (like Hashicorp Vault,
CyberArk Conjur, or cloud provider secret/key management
systems). Some commercial security solutions will provide this
integration for you.

https://12factor.net/config


AWS Fargate is an example of a managed container service that supports
passing secrets using environment variables. Instead of including the secret
value directly in the configuration for the Fargate task, the task definition
can reference secrets held safely and in encrypted form in AWS Secrets
Manager. This means the task definition itself doesn’t include sensitive data
(which would be similar to holding sensitive data in the source code for a
container image). Still, by the time the containerized application running in
Fargate sees the value retrieved from the Secrets Manager service, it will be
an unencrypted environment variable.

One last thing to note about secrets configured through environment
variables is that the environment for a process is configured only once, and
that’s at the point where the process is created. If you want to rotate a
secret, you can’t reconfigure the environment for the container from the
outside.

Passing Secrets Through Files
A better option for passing secrets is to write them into files that the
container can access through a mounted volume. Ideally, this mounted
volume should be a temporary directory that is held in memory rather than
written to disk - as an example, Docker Swarm secrets are mounted into
containers using an in-memory filesystem. Combining this with a secure
secrets store ensures that secrets are never stored “at rest” unencrypted.

Because the file is mounted from the host into the container, it can be
updated from the host side at any time without having to restart the
container. Provided the application knows to retrieve a new secret from the
file if the old secret stops working, this means you can rotate secrets
without having to restart containers. The requirement for applications to be
aware of updated secrets has been made easier through Linux’s inotify
mechanism, where the filesystem can send an event to let a process know
when a file has changed.

Kubernetes Secrets

https://docs.docker.com/engine/swarm/secrets/


If you’re using Kubernetes, the good news is that it has native secrets
support that meets many of the criteria I described at the start of this
chapter:

Kubernetes Secrets are created as independent resources, so they
are not tied to the life cycle of the application code that needs
them.

Kubernetes secrets are stored (along with other resource data) as
base64-encoded values in etcd. Data at rest in etcd is not encrypted
by default, but Kubernetes has built-in support that you can enable
for encrypting Secrets (and any other resources of your choosing
that you might consider sensitive). If you’re using a managed
Kubernetes service you’ll very likely find that this encryption is
either on by default or easily configurable. (It’s also possible to
encrypt the entire etcd data store, but this is rarely done since
Kubernetes started offering resource encryption at the API server
level, which is usually easier to manage.)

Secrets are encrypted in transit between components. This requires
that you have secure connections between Kubernetes components
(for example, a TLS connection between the API Server and etcd
data store) though this is generally the case by default in most
distributions.

Kubernetes Secrets support the file mechanism as well as the
environment variable method, mounting secrets as files in a
temporary filesystem that is held in-memory and never written to
disk.

You can set up Kubernetes RBAC (role-based access control) so
that users can configure Secrets resources but can’t access them
again, giving them write-only permissions.

In addition to the native Secrets support, Kubernetes now has an optional
Secrets Store CSI (Container Storage Interface) Driver that eliminates the
need to use native Kubernetes Secrets.

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/


Secrets Store CSI Driver
This extension allows secrets to be pulled directly from a secure secret
management service (like Vault or a cloud provider Key Management
Service) at runtime, and mounted into pods as files. These secrets are never
stored in etcd and never exposed as environment variables.

To start using this approach you might need to update your applications to
read secrets from the right files, and they need to be restarted on key
rotation (unless they can watch for updates using inotify).

There is the option to sync these resources to native Kubernetes Secrets,
though this would seem to defeat the whole point of using the Secrets Store
driver! However, the ability to sync can help during a migration in which
certain apps need the legacy Secrets approach, for example because they
read from environment variables. Additionally, some resources might refer
to Secrets (for example the Ingress resource can look for TLS certifiates by
reference to a Secret resource).

Rotating secrets in Kubernetes
When it comes to rotating secrets, there are two aspects to consider:

Rotating the value of a Kubernetes Secret being passed to an
application

Rotating the keys in the EncryptionConfig resource used to encrypt
Secret resources in etcd

If you’re using plain Secret objects, you can update their values with
kubectl, and then you will generally need to restart pods that use those
secrets to get the application to use the new values. Secret managers (like
Vault or AWS Secrets Manager) can make this process easier.

Rotating the keys used for encrypting Secret resources is a multi-step
process that involves modifying the EncryptionConfig resource, and
restarting the API Server(s) at least twice:

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/#rotating-a-decryption-key


1. Add the new key as a second entry in the EncryptionConfig
resource.

2. Restart the API Servers to read the new EncryptionConfig. They
have access to the new key and can use it for decryption if they
encounter a resource that they can’t decrypt with the old key.

3. Swap the keys so that the new key is the first entry in the
EncryptionConfig resource.

4. Restart the API Servers to re-read the EncryptionConfig, so they
start using the new key for encryption.

5. Replace all the existing Secret resources so they are encrypted with
the new key.

6. It’s a good idea to update the EncryptionConfig to remove the old
key.

In my experience most enterprises choose a third-party commercial solution
for secret storage, either from their cloud provider (such as the AWS Key
Management System, or its Azure or GCP equivalents), or from a vendor
such as Hashicorp or CyberArk. These offer several benefits:

A dedicated secrets management system can be shared with
multiple clusters. Secret values can be rotated, irrespective of the
life cycle of the application cluster(s).

These solutions can make it easier for organizations to standardize
on one way of handling secrets, with common best practices for
management and consistent logs and auditing of secrets.



NOTE
The public cloud providers all document their recommendations for encrypting
Kubernetes secrets:

aAWS documentation for using Key Management Service with EKS

Microsoft documentation for using Key Management Service with AKS

Google documentation for using a

Secrets Are Accessible by Root
Whether a secret is passed into a container as a mounted file or as an
environment variable, it is going to be possible for the root user on the host
to access it.

If the secret is held in a file, that file lives on the host’s filesystem
somewhere. Even if it’s in a temporary directory, the root user will be able
to access it. As a demonstration of this you can list the temporary
filesystems mounted on a Kubernetes node, and you’ll find something like
this:

root@myhost:/$ mount -t tmpfs 
... 
tmpfs on /var/lib/kubelet/pods/f02a9901-8214-4751-b157-
d2e90bc6a98c/volumes/kuber 
netes.io~secret/coredns-token-gxsqd type tmpfs (rw,relatime) 
tmpfs on /var/lib/kubelet/pods/074d762f-00ed-48e6-a22f-
43fc673df0e6/volumes/kuber 
netes.io~secret/kube-proxy-token-bvktc type tmpfs (rw,relatime) 
tmpfs on /var/lib/kubelet/pods/e1bad0db-8c0b-4d7b-8867-
9fc019de258f/volumes/kuber 
netes.io~secret/default-token-h2x8p type tmpfs (rw,relatime) 
...

Using the directory names included in this output, the root user has no
difficulty accessing the secret files held within them.

https://docs.aws.amazon.com/eks/latest/userguide/enable-kms.html
https://learn.microsoft.com/en-us/azure/aks/use-kms-etcd-encryption
https://cloud.google.com/kubernetes-engine/docs/how-to/encrypting-secrets


Extracting the secrets held in environment variables is almost as simple for
the root user. Let’s demonstrate this by starting a container with Docker on
the command line, passing in an environment variable:

liz@myhost:~$ docker run --rm -it -e SECRET=mysecret ubuntu sh 
$ env 
... 
SECRET=mysecret 
...

This container is running sh, and from another terminal you can find the
process ID for that executable:

liz@myhost:~$ ps -C sh 
  PID TTY          TIME CMD 
17322 pts/0    00:00:00 sh

In Chapter 3 you saw that lots of interesting information about a process is
held in the /proc directory. That includes all its environment variables,
held in /proc/<process ID>/environ:

liz@myhost:~$ sudo cat /proc/17322/environ 
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=2cc99c98ba5aTERM=xtermSECRET=mysecretHOME=/root

As you can see, any secret passed in through the environment can be read in
this way. Are you wondering whether it wouldn’t be better to encrypt the
secret first? Think about how you would get the decryption key—which
also needs to be kept secret—into the container.

I can’t overemphasize that anyone who has root access to a host machine
has carte blanche over everything on that machine, including all its
containers and their secrets. This is why it’s so important to prevent
unauthorized root access within your deployment, and why running as root
inside a container is so dangerous: since root inside the container is root on
the host, it is just one step away from compromising everything on that
host.



Summary
If you have worked through the book to this point, you should have a good
understanding of how containers work, and you know how to send secret
information safely between them. You have seen numerous ways in which
containers can be exploited, and many ways in which they can be protected.

The last group of protection mechanisms we shall consider relates to
runtime protection, coming up in the next chapter.
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